A mixed proton-electron-conducting cathode with a Ru nanoparticle catalyst for electrochemical ammonia synthesis based on a proton-conducting BZCYYb electrolyte

被引:2
|
作者
Chen, Jiaqi [1 ,2 ]
Gao, Wenbo [2 ,3 ]
Zhu, Liangzhu [4 ]
Tao, Haoliang [4 ]
Feng, Sheng [2 ]
Cao, Hujun [2 ,3 ]
Guo, Jianping [2 ,3 ]
Chen, Yanxia [1 ]
Chen, Ping [2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Chem Phys, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315200, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
NITROGEN REDUCTION; HIGH-EFFICIENCY; TEMPERATURE; HYDROGEN; CELL; ION;
D O I
10.1039/d4ta04520c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical ammonia synthesis (EAS) has emerged as a promising alternative to the traditional Haber-Bosch process. Indeed, N2 activation in room-temperature EAS systems remains a formidable challenge due to the strong N 00000000000000000 00000000000000000 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 00000000000000000 00000000000000000 N bond. Solid oxide proton conductor EAS (PCEAS) electrolysis cells operating at intermediate temperatures offer a promising solution by utilizing both temperature and potential. In this process, the design of the cathode is crucial, requiring abundant proton and electron conduction channels, along with highly active catalysts. Herein, we design a cathode composed of ruthenium-La0.6Sr0.4Co0.2Fe0.8O3-delta-BaZr0.1Ce0.7Y0.1Yb0.1O3-delta (Ru-LSCF-BZCYYb) to meet the aforementioned requirements for PCEAS. LSCF and BZCYYb form a porous skeleton at the cathode, with Ru nanoparticles dispersed on the surface of this structure. This configuration features numerous triple-phase boundaries (TPBs), facilitating the contact between activated N2, H+, and e-, thereby promoting electrochemical ammonia synthesis. The impregnated Ru-LSCF-BZCYYb|BZCYYb|Ni-BZCYYb PCEAS electrolysis cell exhibited a maximum NH3 formation rate of 5.14 x 10-11 mol s-1 cm-2 and a maximum Faraday efficiency (FE) of 0.128% at 400 degrees C and -0.2 V with H2 and N2 as feedstock gases. Its yield surpassed those of the mixed Ru-LSCF-BZCYYb|BZCYYb|Ni-BZCYYb and the impregnated Ru-BZCYYb|BZCYYb|Ni-BZCYYb by a factor of 3.9 and 11.5, respectively. The authenticity of ammonia synthesis is confirmed using the 15N2 isotope combined with NMR detection. This study also achieved EAS using water as the hydrogen source. This approach would better meet the future demand for EAS by directly using N2 and H2O. Solid oxide proton conductor electrolysis cells, which operate at intermediate temperatures and utilize both heat and electrical potential, have emerged as a promising alternative to the traditional Haber-Bosch process.
引用
收藏
页码:26667 / 26677
页数:11
相关论文
共 50 条
  • [41] Proton-Conducting Polymer Wrapped Cathode Catalyst for Enhancing Triple-Phase Boundaries in Proton Exchange Membrane Fuel Cells
    Garapati, Meenakshi Seshadhri
    Nechiyil, Divya
    Joulie, Sebastien
    Bacsa, Revathi R.
    Sundara, Ramaprabhu
    Bacsa, Wolfgang
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (01): : 627 - 638
  • [42] Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application
    S. Karthikeyan
    S. Selvasekarapandian
    M. Premalatha
    S. Monisha
    G. Boopathi
    G. Aristatil
    A. Arun
    S. Madeswaran
    Ionics, 2017, 23 : 2775 - 2780
  • [43] Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application
    Karthikeyan, S.
    Selvasekarapandian, S.
    Premalatha, M.
    Monisha, S.
    Boopathi, G.
    Aristatil, G.
    Arun, A.
    Madeswaran, S.
    IONICS, 2017, 23 (10) : 2775 - 2780
  • [44] Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Yc.
    JOURNAL OF POWER SOURCES, 2008, 177 (02) : 369 - 375
  • [45] Characteristics of HiSPEC13100-catalyst-based cathode (70Pt/C) for hydrogen–air fuel cell with proton-conducting polymer electrolyte
    V. B. Avakov
    V. A. Bogdanovskaya
    V. A. Vasilenko
    B. A. Ivanitskii
    E. M. Kol’tsova
    A. V. Kuzov
    A. V. Kapustin
    I. K. Landgraf
    M. M. Stankevich
    M. R. Tarasevich
    Russian Journal of Electrochemistry, 2015, 51 : 719 - 729
  • [46] Tailoring Electrochemical Property of Layered Perovskite Cathode by Cu-doping for Proton-Conducting IT-SOFCs
    Ling, Y.
    Zhao, L.
    Liu, X.
    Lin, B.
    FUEL CELLS, 2015, 15 (02) : 384 - 389
  • [47] Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F
    Radha, K. P.
    Selvasekarapandian, S.
    Karthikeyan, S.
    Hema, M.
    Sanjeeviraja, C.
    IONICS, 2013, 19 (10) : 1437 - 1447
  • [48] Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices
    P. Christopher Selvin
    P. Perumal
    S. Selvasekarapandian
    S. Monisha
    G. Boopathi
    M. V. Leena Chandra
    Ionics, 2018, 24 : 3535 - 3542
  • [49] Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F
    K. P. Radha
    S. Selvasekarapandian
    S. Karthikeyan
    M. Hema
    C. Sanjeeviraja
    Ionics, 2013, 19 : 1437 - 1447
  • [50] Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices
    Selvin, P. Christopher
    Perumal, P.
    Selvasekarapandian, S.
    Monisha, S.
    Boopathi, G.
    Chandra, M. V. Leena
    IONICS, 2018, 24 (11) : 3535 - 3542