Amorphous titanium dioxide and polyaniline dual modifying silicon for highly enhanced lithium-ion storage

被引:2
|
作者
Shi, Wen-Hua [1 ]
Yin, Zhi-Wen [1 ]
Wang, Meng [1 ]
Liu, Jing [1 ]
Hu, Zhi-Yi [1 ,2 ]
Li, Bei [1 ,3 ]
Chen, Li-Hua [1 ]
Li, Yu [1 ]
Su, Bao-Lian [1 ,4 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Nanostruct Res Ctr NRC, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ Technol, Res Ctr Mat Genome Engn, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
[4] Univ Namur, Lab Inorgan Mat Chem CMI, B-5000 Namur, Belgium
基金
中国国家自然科学基金;
关键词
Silicon anode; Li-ion battery; Amorphous titanium dioxide; Polyaniline; Double buffer layers; PERFORMANCE ANODE MATERIAL; CORE-SHELL; BATTERY; NANOPARTICLES; NANOCOMPOSITE; COMPOSITE; FABRICATION;
D O I
10.1016/j.cej.2024.154343
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Silicon (Si) anode material is promising in the next generation of lithium-ion batteries (LIBs) with high energy densities for its much higher capacity (4200 mAh/g) than that of commercial graphite (372 mAh/g). However, silicon anode material with low electronic conductivity suffers a huge volume variation and accompanies side reactions during alloyed and de-alloyed process. Here, we design an inner amorphous titanium dioxide (TiO2) and an outer flexible conductive polyaniline (PANI) network dual modified Si@TiO2@PANI material for LIBs, where the TiO2 avoids the side reactions and the PANI network layer buffers the volume expansion and increases the electronic conductivity. The as-prepared Si@TiO2@PANI exhibits a high initial discharge capacity of 3050 mAh/g and maintains 1583 mAh/g after 200 cycles at 0.5 A/g. It even delivers the discharge capacity of 1002 mAh/g after 600 cycles at 1 A/g, as well as an excellent rate ability with discharge capacity of 1890, 1260 and 432 mAh/g at the high current density of 1, 2 and 5 A/g, respectively. Our strategy shows that the innovative design of double buffer layers on Si can synergistically promote stability and accelerate kinetics of Li+ transport, offering novel resolution strategy to enhance the performance of Si-based anodes for LIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Free-Standing Polyaniline/Silicon Nanowire Forest as the Anode for Lithium-ion Batteries
    Eldona, Calvin
    Hawari, Naufal Hanif
    Hamid, Faiq Haidar
    Dempwolf, Wibke
    Iskandar, Ferry
    Peiner, Erwin
    Wasisto, Hutomo Suryo
    Sumboja, Afriyanti
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [42] Nanocomposites for Lithium-Ion Battery Anodes Made of Silicon and Polyaniline Doped with Phytic Acid
    Astrova, Ekaterina V.
    Sapurina, Irina Yu
    Parfeneva, Alesya V.
    Li, Galina V.
    Nashchekin, Alexey V.
    Lozhkina, Darina A.
    Rumyantsev, Aleksander M.
    ENERGY TECHNOLOGY, 2024, 12 (11)
  • [43] Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries
    Jerliu, B.
    Doerrer, L.
    Hueger, E.
    Borchardt, G.
    Steitz, R.
    Geckle, U.
    Oberst, V.
    Bruns, M.
    Schneider, O.
    Schmidt, H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (20) : 7777 - 7784
  • [44] Improvement of lithium ion storage in titanium dioxide nanowires by introducing interfacial capacity
    Li, Yanhong
    Tang, Xiao
    Zhou, Xianju
    Li, Li
    Jiang, Sha
    APPLIED SURFACE SCIENCE, 2020, 505
  • [45] Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode
    Huang, X. D.
    Zhang, F.
    Gan, X. F.
    Huang, Q. A.
    Yang, J. Z.
    Lai, P. T.
    Tang, W. M.
    RSC ADVANCES, 2018, 8 (10): : 5189 - 5196
  • [46] Defect-rich bronze titanium dioxide ultrathin nanosheets supported on carbon nanotubes for enhanced lithium-ion storages
    Liu, Dan
    Li, Kaifeng
    Li, Huzhen
    Zhen, Mengmeng
    Hu, Zhenzhong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (09) : 13003 - 13012
  • [47] Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets
    Niu, Sibo
    McFeron, Ryan
    Godinez-Salomon, Fernando
    Chapman, Brian S.
    Damin, Craig A.
    Tracy, Joseph B.
    Augustyn, Veronica
    Rhodes, Christopher P.
    CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7794 - 7807
  • [48] Layered Silicon/Titanium Composite and Its Electrochemical Performance for Lithium-Ion Batteries
    Wan, Jiale
    Zhao, Zhuqing
    Xie, Hongwei
    Yin, Huayi
    Song, Qiushi
    Ning, Zhiqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (44) : 14515 - 14522
  • [49] Silicon-nanoparticles isolated by in situ grown polycrystalline graphene hollow spheres for enhanced lithium-ion storage
    Zhang, Juan
    Zhang, Li
    Xue, Peng
    Zhang, Liya
    Zhang, Xianlin
    Hao, Weiwei
    Tian, Jinghua
    Shen, Ming
    Zheng, Honghe
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) : 7810 - 7821
  • [50] Nanoporous carbon oxynitride and its enhanced lithium-ion storage performance
    Cha, Wangsoo
    Kim, Sungho
    Selvarajan, Premkumar
    Lee, Jang Mee
    Davidraj, Jefrin Marykala
    Joseph, Stalin
    Ramadass, Kavitha
    Kim, In Young
    Vinu, Ajayan
    NANO ENERGY, 2021, 82