Deep learning in motor imagery EEG signal decoding: A Systematic Review

被引:0
|
作者
Saibene, Aurora [1 ,2 ]
Ghaemi, Hafez [3 ,4 ]
Dagdevir, Eda [5 ]
机构
[1] Univ Milano Bicocca, Dept Informat Syst & Commun, Viale Sarca 336, I-20126 Milan, Italy
[2] Milan Ctr Neurosci, NeuroMI, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[3] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
[4] Mila, Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[5] Kayseri Univ, Vocat Sch Tech Sci, Dept Elect & Automat, Kayseri, Turkiye
关键词
Brain-computer interface (BCI); Motor imagery (MI); Electroencephalography (EEG); Deep learning (DL); CONVOLUTIONAL NEURAL-NETWORK; MENTAL-IMAGERY; CLASSIFICATION; TRANSFORMER; ALGORITHM; DOMAIN; CNN; REPRESENTATION; RECOGNITION; PERFORMANCE;
D O I
10.1016/j.neucom.2024.128577
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Thanks to the fast evolution of electroencephalography (EEG)-based brain-computer interfaces (BCIs) and computing technologies, as well as the availability of large EEG datasets, decoding motor imagery (MI) EEG signals is rapidly shifting from traditional machine learning (ML) to deep learning (DL) approaches. Furthermore, real-world MI-EEG BCI applications are progressively requiring higher generalization capabilities, which can be achieved by leveraging publicly available MI-EEG datasets and high-performance decoding models. Within this context, this paper provides a systematic review of DL approaches for MI-EEG decoding, focusing on studies that work on publicly available EEG-MI datasets. This review paper firstly provides a clear overview of these datasets that can be used for DL model training and testing. Afterwards, considering each dataset, related DL studies are discussed with respect to the four decoding paradigms identified in the literature, i.e., subject-dependent, subject-independent, transfer learning, and global decoding paradigms. Having analyzed the reviewed studies, the current trends and strategies, popular architectures, baseline models that are used for comprehensive analysis, and techniques to ensure reproducibility of the results in DL-based MI-EEG decoding are also identified and discussed. The selection and screening of the studies included in this review follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, leading to a comprehensive analysis of 394 papers published between January 1, 2017, and January 23, 2023.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] An EEG Signal Processing Algorithm on Motor Imagery
    Huang, ZhenFeng
    Bai, HaoWen
    Li, DaQiang
    Lin, Hesheng
    Liang, MeiYun
    Wang, HongTao
    ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING, 2012, 19 : 521 - 524
  • [42] Deep Learning Techniques for EEG Signal Applications - a Review
    Praveena, D. Merlin
    Sarah, D. Angelin
    George, S. Thomas
    IETE JOURNAL OF RESEARCH, 2022, 68 (04) : 3030 - 3037
  • [43] Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach
    Sreeja, S. R.
    Rabha, Joytirmoy
    Nagarjuna, K. Y.
    Samanta, Debasis
    Mitra, Pabitra
    Sarma, Monalisa
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 61 - 66
  • [44] Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification
    Mohammadpour, Mostafa
    Ghorbanian, MohammadKazem
    Mozaffari, Saeed
    2016 EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2016, : 288 - 292
  • [45] EEG motor/imagery signal classification comparative using machine learning algorithms
    Guadalupe Lazcano-Herrera, Alicia
    Fuentes-Aguilar, Rita Q.
    Alfaro-Ponce, Mariel
    2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021), 2021,
  • [46] Decoding of motor imagery EEG based on brain source estimation
    Li, Ming-Ai
    Wang, Yi-Fan
    Jia, Song-Min
    Sun, Yan-Jun
    Yang, Jin-Fu
    NEUROCOMPUTING, 2019, 339 : 182 - 193
  • [47] Manifold Embedded Domain Adaptation for Motor Imagery EEG Decoding
    Jiang, Qin
    Zhang, Yi
    Wang, Wei
    Huang, Qian
    IAENG International Journal of Computer Science, 2024, 51 (08) : 985 - 997
  • [48] Optimal sensor set for decoding motor imagery from EEG
    Dillen, Arnau
    Ghaffari, Fakhreddine
    Romain, Olivier
    Vanderborght, Bram
    Meeusen, Romain
    Roelands, Bart
    De Pauw, Kevin
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [49] Optimal Sensor Set for Decoding Motor Imagery from EEG
    Dillen, Arnau
    Ghaffari, Fakhreddine
    Romain, Olivier
    Vanderborght, Bram
    Marusic, Uros
    Grospretre, Sidney
    Nowe, Ann
    Meeusen, Romain
    De Pauw, Kevin
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [50] SCDAN: Learning Common Feature Representation of Brain Activation for Intersubject Motor Imagery EEG Decoding
    Fu, Boxun
    Li, Fu
    Ji, Youshuo
    Li, Yang
    Xie, Xuemei
    Shi, Guangming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72