New Lifetime Regression Model with Application to Prostate Cancer Data

被引:0
|
作者
Cordeiro, Gauss M. [1 ]
Ortega, Edwin M. M. [2 ]
Kattan, Michael W. [3 ]
Vila, Roberto [4 ]
Hussein, Mohamed [5 ]
机构
[1] Univ Fed Pernambuco, Dept Stat, BR-50740550 Recife, PE, Brazil
[2] Univ Sao Paulo, Dept Exact Sci, BR-13418900 Piracicaba, SP, Brazil
[3] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44195 USA
[4] Univ Brasilia, Dept Stat, BR-70910900 Brasilia, DF, Brazil
[5] Alexandria Univ, Dept Math & Comp Sci, Alexandria 21544, Egypt
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 03期
关键词
censored data; generalized gamma distribution; prostate cancer; regression model; GENERALIZED GAMMA-DISTRIBUTION;
D O I
10.37256/cm.5320244552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new five-parameter extended fatigue lifetime model named the Weibull generalized gamma distribution is introduced, which generalizes different distributions widely used in survival and reliability analysis. Different mathematical properties are presented, such as stochastic representation, quantiles, minimum, stochastic orders, closed- form expressions for the expectation, and Kullback-Leibler divergence. We estimate the model parameters by maximum likelihood. A Monte Carlo simulation is performed to study the asymptotic normality of the estimates. Further, we propose an extended regression model based on the logarithm of this distribution with two systematic components suitable for censored data, especially in the oncology area, as shown in the analysis of a prostate cancer dataset.
引用
收藏
页码:2724 / 2750
页数:27
相关论文
共 50 条
  • [31] Validation of a regression model for standardizing lifetime
    Martin, GS
    Strand, E
    Kearney, MT
    JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 1997, 210 (11) : 1641 - &
  • [32] New estimating equation approaches with application in lifetime data analysis
    Yu, Keming
    Wang, Bing Xing
    Patilea, Valentin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (03) : 589 - 615
  • [33] New estimating equation approaches with application in lifetime data analysis
    Keming Yu
    Bing Xing Wang
    Valentin Patilea
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 589 - 615
  • [34] ANALYSIS OF CANCER INCIDENCE DATA OF POPULATION BASED CANCER REGISTRY IN THE NORTH OF IRAN: APPLICATION OF POISSON REGRESSION MODEL
    Hajian-Tilaki, K. O.
    JP JOURNAL OF BIOSTATISTICS, 2011, 6 (01) : 19 - 30
  • [35] Geographically Weighted Cox Regression for Prostate Cancer Survival Data in Louisiana
    Xue, Yishu
    Schifano, Elizabeth D.
    Hu, Guanyu
    GEOGRAPHICAL ANALYSIS, 2020, 52 (04) : 570 - 587
  • [36] A new survival model with surviving fraction: An application to colorectal cancer data
    Barriga, Gladys D. C.
    Cancho, Vicente G.
    Garibay, Daniel, V
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (09) : 2665 - 2680
  • [37] A new one-parameter lifetime distribution and its regression model with applications
    Eliwa, M. S.
    Altun, Emrah
    Alhussain, Ziyad Ali
    Ahmed, Essam A.
    Salah, Mukhtar M.
    Ahmed, Hanan Haj
    El-Morshedy, M.
    PLOS ONE, 2021, 16 (02):
  • [38] DIRECT METHODS FOR POSITRONIUM LIFETIME DATA REGRESSION
    YOO, HK
    CELITANS, GJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 547 - &
  • [39] Lifetime economic burden of prostate cancer
    Michael E Stokes
    Jack Ishak
    Irina Proskorovsky
    Libby K Black
    Yijian Huang
    BMC Health Services Research, 11
  • [40] Lifetime economic burden of prostate cancer
    Stokes, Michael E.
    Ishak, Jack
    Proskorovsky, Irina
    Black, Libby K.
    Huang, Yijian
    BMC HEALTH SERVICES RESEARCH, 2011, 11 : 349