Analytical Solution of the Non-circular Tunnel with a Void Defect in the Complex Stress Field

被引:0
|
作者
Wang, Dapeng [1 ]
Niu, Xing [1 ]
Wang, Jingchun [2 ]
Rao, Chenjie [1 ]
Xu, Qiang [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Sch Civil Engn, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Safety Engn & Emergency Management, Shijiazhuang 050043, Peoples R China
关键词
Tunnel engineering; Complex variable function; Analytical solution; Void defect; Non-circular tunnel; CIRCULAR TUNNEL;
D O I
10.1007/s12205-024-2481-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To address the issue of stress concentrations afflicting non-circular tunnels caused by void defects, a method of analytical solution is introduced, which is grounded in the theory of complex variables. Firstly, the mapping function of the non-circular tunnel containing a void was obtained; then the power series method was implemented to determine the coefficients of the stress function and formulate the solution equations. Finally, the analytical solution was verified by simulation through Flac3D software. The effects of pore depth, width, stress inclination and stress ratio on the stress and deformation of the tunnel are considered analytically using the method of this paper. The findings indicate a strong agreement between the analytical solution and the numerical solution, and there is an obvious stress concentration at the defect location. The void depth, width, main stress field inclination and stress ratio contribute remarkably to the stress concentration at the location of tunnel void defects, thus affecting the mechanical behavior and safety condition after tunnel excavation. The results of the study propose a fast and accurate elasticity calculation method for non-circular tunnel excavation problems, offering a valuable reference to similar tunnel projects in design, construction and stability analysis.
引用
收藏
页码:4717 / 4727
页数:11
相关论文
共 50 条
  • [31] Analytical Approaches to determine the Torsional Stress and the Notch Coefficient in Shafts with continuous non-circular Contours
    Ziaei, Masoud
    Selzer, Marcus
    WELLE-NABE-VERBINDUNGEN 2018: DIMENSIONIERUNG - FERTIGUNG - ANWENDUNGEN (8. VDI-FACHTAGUNG), 2018, 2337 : 177 - 188
  • [32] Exact Solution of a Class of Non-Circular Vibrating Membranes
    Wang, C. Y.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2022, 144 (04):
  • [33] Semi-analytical solution for stress and displacement of lined circular tunnel at shallow depths
    Cai, Hui
    Lu, Ai-zhong
    Ma, Yao-cai
    Yin, Chong-lin
    APPLIED MATHEMATICAL MODELLING, 2021, 100 : 263 - 281
  • [34] STRESS ANALYSIS OF PIPE SUPPORT ATTACHMENTS: A COMPARISON OF ANALYTICAL METHODS AND FINITE ELEMENT ANALYSIS FOR CIRCULAR AND NON-CIRCULAR ATTACHMENTS
    Bhattacharya, Anindya
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 3: DESIGN AND ANALYSIS, 2014,
  • [35] A general analytical solution for lateral soil response of non-circular cross-sectional pile segment
    Zhou, Hang
    Yuan, Jingrong
    Liu, Hanlong
    APPLIED MATHEMATICAL MODELLING, 2019, 71 : 601 - 631
  • [36] Calculating method of contact stress for non-circular gears
    李纪强
    刘忠明
    颜世铛
    Journal of Chongqing University(English Edition), 2015, 14 (01) : 19 - 24
  • [37] Stress Analysis of Composite Plates with Non-circular Cutout
    Rezaeepazhand, J.
    Jafari, M.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VII, 2008, 385-387 : 365 - 368
  • [38] Analytical Stress Solutions for a Deep Buried Circular Tunnel Under an Unsteady Temperature Field
    Qian-xiang Cheng
    Ai-zhong Lu
    Chong-lin Yin
    Rock Mechanics and Rock Engineering, 2021, 54 : 1355 - 1368
  • [39] Analytical Stress Solutions for a Deep Buried Circular Tunnel Under an Unsteady Temperature Field
    Cheng, Qian-xiang
    Lu, Ai-zhong
    Yin, Chong-lin
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (03) : 1355 - 1368
  • [40] INTERCHANGE STABILITY OF NON-CIRCULAR REVERSED FIELD PINCHES
    SKINNER, DA
    PRAGER, SC
    TODD, AMM
    NUCLEAR FUSION, 1988, 28 (02) : 306 - 311