Multi-label feature selection based on minimizing feature redundancy of mutual information

被引:1
|
作者
Zhou, Gaozhi [2 ]
Li, Runxin [1 ,2 ]
Shang, Zhenhong [2 ]
Li, Xiaowu [2 ]
Jia, Lianyin [2 ]
机构
[1] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label feature selection; Mutual information; Sparse model; Redundant correlation; OPTIMIZATION ALGORITHM; SHRINKAGE; COMMON;
D O I
10.1016/j.neucom.2024.128392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label feature selection is an indispensable technology in the preprocessing of multi-label high-dimensional data. Approaches utilizing information theory and sparse models hold promise in this domain, demonstrating strong performance. Although there have been extensive literatures using l 1 and l 2 , 1-norms to identify label- specific features and common features in the feature space, they all ignore the redundant information interference problem when different features are learned simultaneously. Considering that features and labels in multi-label data are rarely linearly correlated, the MFS-MFR approach is presented to generate a representation of the nonlinear correlation between features and labels using the mutual information estimator. Following that, MFS-MFR detects specific and common features in the feature-label mutual information space using two coefficient matrices constrained by the l 1 and l 2 , 1-norms, respectively. In particular, we define a nonzero correlation constraint that effectively minimizes the redundant correlation between the two matrices. Moreover, a manifold regularization term is devised to preserve the local information of the mutual information space. To solve the optimization model with nonlinear binary regular term, we employ a novel solution approach called S-FISTA. Extensive experiments across 15 multi-label benchmark datasets, comparing against 11 top-performing multi-label feature selection methods, demonstrate the superior performance of MFS-MFR.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Multi-Objective online streaming Multi-Label feature selection using mutual information
    Rafie, Azar
    Moradi, Parham
    Ghaderzadeh, Abdulbaghi
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 216
  • [32] MFSJMI: Multi-label feature selection considering join mutual information and interaction weight
    Zhang, Ping
    Liu, Guixia
    Song, Jiazhi
    PATTERN RECOGNITION, 2023, 138
  • [33] Multi-label Feature Selection via Information Gain
    Li, Ling
    Liu, Huawen
    Ma, Zongjie
    Mo, Yuchang
    Duan, Zhengjie
    Zhou, Jiaqing
    Zhao, Jianmin
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 345 - 355
  • [34] Multi-Label Feature Selection using Correlation Information
    Braytee, Ali
    Liu, Wei
    Catchpoole, Daniel R.
    Kennedy, Paul J.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1649 - 1656
  • [35] Multi-label feature selection via information gain
    Li, Ling
    Liu, Huawen
    Ma, Zongjie
    Mo, Yuchang
    Duan, Zhengjie
    Zhou, Jiaqing
    Zhao, Jianmin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8933 : 345 - 355
  • [36] Learning correlation information for multi-label feature selection
    Fan, Yuling
    Liu, Jinghua
    Tang, Jianeng
    Liu, Peizhong
    Lin, Yaojin
    Du, Yongzhao
    PATTERN RECOGNITION, 2024, 145
  • [37] Multi-label Feature Selection via Global Relevance and Redundancy Optimization
    Zhang, Jia
    Lin, Yidong
    Jiang, Min
    Li, Shaozi
    Tang, Yong
    Tan, Kay Chen
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2512 - 2518
  • [38] A multi-label feature selection method based on an approximation of interaction information
    Pan, Minlan
    Sun, Zhanquan
    Wang, Chaoli
    Cao, Gaoyu
    INTELLIGENT DATA ANALYSIS, 2022, 26 (04) : 823 - 840
  • [39] An Ensemble Multi-Label Feature Selection Algorithm Based on Information Entropy
    Li, Shining
    Zhang, Zhenhai
    Duan, Jiaqi
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2014, 11 (04) : 379 - 386
  • [40] Feature redundancy term variation for mutual information-based feature selection
    Gao, Wanfu
    Hu, Liang
    Zhang, Ping
    APPLIED INTELLIGENCE, 2020, 50 (04) : 1272 - 1288