Hybrid Multivariate Machine Learning Models for Streamflow Forecasting: A Two-Stage Decomposition-Reconstruction Framework

被引:1
|
作者
Jin, Aohan [1 ]
Wang, Quanrong [1 ,2 ]
Zhou, Renjie [3 ]
Shi, Wenguang [1 ]
Qiao, Xiangyu [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Hubei, Peoples R China
[2] Minist Ecol & Environm, State Environm Protect Key Lab Source Apportionmen, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Sam Houston State Univ, Dept Environm & Geosci, Huntsville, TX 77340 USA
基金
中国国家自然科学基金;
关键词
Daily streamflow forecasting; Decomposition algorithm; Boundary effects; Sample entropy; Machine learning; Two-stage decomposition reconstruction forecasting (TSDRF) framework; WAVELET TRANSFORM; FLOW; REGRESSION; RUNOFF; PREDICTION; NETWORKS; EMD;
D O I
10.1061/JHYEFF.HEENG-6254
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Robust and accurate streamflow forecasting holds significant importance for flood mitigation, drought warning and water resource management. On account of the intricate nonlinear and nonstationary nature of streamflow time series, numerous decomposition-based approaches have been proposed and integrated with other architectures. However, directly decomposing the entire streamflow data set introduces future information into the decomposition and reconstruction processes, while decomposing calibration and validation sets independently can result in undesired boundary effects. Besides, the signal decomposition techniques tend to generate a large number of decomposed modes. Using all these modes directly as input variables results in intricate forecasting models and is prone to overfitting. To address these challenges, we developed a novel two-stage decomposition reconstruction forecasting (TSDRF) framework by coupling sequentially decomposition technique, sample entropy and multivariate machine learning methods in this study. This newly proposed TSDRF framework is assessed at three hydrologic stations from Yellow River, China. Furthermore, the TSDRF framework is also compared with the two-stage decomposition reconstruction hindcasting (TSDRH) framework under different lead times. The findings suggest that TSDRF framework based on variation mode decomposition (VMD) algorithm outperform other models in terms of mitigating boundary effects, minimizing computational costs, and enhancing generalization capabilities across various lead times.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Forecasting carbon dioxide emissions: application of a novel two-stage procedure based on machine learning models
    Wang, Chunzi
    Li, Moye
    Yan, Junpeng
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (02) : 477 - 493
  • [12] Hybrid river stage forecasting based on machine learning with empirical mode decomposition
    Heddam, Salim
    Vishwakarma, Dinesh Kumar
    Abed, Salwan Ali
    Sharma, Pankaj
    Al-Ansari, Nadhir
    Alataway, Abed
    Dewidar, Ahmed Z.
    Mattar, Mohamed A.
    APPLIED WATER SCIENCE, 2024, 14 (03)
  • [13] Hybrid river stage forecasting based on machine learning with empirical mode decomposition
    Salim Heddam
    Dinesh Kumar Vishwakarma
    Salwan Ali Abed
    Pankaj Sharma
    Nadhir Al-Ansari
    Abed Alataway
    Ahmed Z. Dewidar
    Mohamed A. Mattar
    Applied Water Science, 2024, 14
  • [14] River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models
    Youngmin Seo
    Sungwon Kim
    Ozgur Kisi
    Vijay P. Singh
    Kamban Parasuraman
    Water Resources Management, 2016, 30 : 4011 - 4035
  • [15] River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models
    Seo, Youngmin
    Kim, Sungwon
    Kisi, Ozgur
    Singh, Vijay P.
    Parasuraman, Kamban
    WATER RESOURCES MANAGEMENT, 2016, 30 (11) : 4011 - 4035
  • [16] Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow
    Loganathan, Parthiban
    Mahindrakar, Amit Baburao
    JOURNAL OF WATER AND CLIMATE CHANGE, 2021, 12 (05) : 1824 - 1837
  • [17] Multivariate Streamflow Simulation Using Hybrid Deep Learning Models
    Wegayehu, Eyob Betru
    Muluneh, Fiseha Behulu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [18] Two-Stage Hybrid Extreme Learning Machine for Sequential Imbalanced Data
    Mao, Wentao
    Wang, Jinwan
    He, Ling
    Tian, Yangyang
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 423 - 433
  • [19] TWO-STAGE FRAMEWORK FOR SEASONAL TIME SERIES FORECASTING
    Xu, Qingyang
    Wen, Qingsong
    Sun, Liang
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3530 - 3534
  • [20] A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
    Yu, Wenqing
    Wang, Xingju
    Jiang, Xin
    Zhao, Ranhang
    Zhao, Shen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 406 - 421