Optical continuous pulse position modulation-based analog RoF via frequency-domain position estimation

被引:0
|
作者
Xu, Yicheng [1 ]
Zhu, Yixiao [1 ]
Fu, Mengfan [1 ]
Hu, Weisheng [1 ]
Zhuge, Qunbi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive noise;
D O I
10.1364/OL.534747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analog radio-over-fiber (A-RoF) solutions for mobile fronthaul are regaining wide attention due to their high spectral efficiency and low complexity. However, the performance of A-RoF is usually limited by the fiber link fidelity. In this Letter, we propose and experimentally demonstrate an optical continuous pulse position modulation-based analog radio- over-fiber (OCPPM-RoF) scheme, in which the amplitudes of wireless waveforms are mapped to the time-domain positions of optical pulses to decouple the additive noise. The de-modulation of OCPPM-RoF signals is performed by a frequency-domain continuous position estimation (FD-CPE) algorithm including cross-power spectrum calculation and weighted least square for accurate delay estimation. In the experiment, by adopting appropriate pulse width factors, the recovered signal-to-noise ratio (SNR) can be flexibly adjusted within a wide range from 31.8 to 54.0 dB, supporting the transmission of various formats from 256-QAM to 65536-QAM. The results indicate that OCPPM-RoF can be a promising candidate for future fronthaul. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:4803 / 4806
页数:4
相关论文
共 41 条