Microscopic derivation of the generalized collective Hamiltonian

被引:0
|
作者
Dzyublik, A. Ya. [1 ]
Starosta, K. [2 ]
Yu, Z. [2 ]
Koike, T. [3 ,4 ]
机构
[1] Natl Acad Sci Ukraine, Inst Nucl Res, Ave Nauki 47, UA-03680 Kiev, Ukraine
[2] Simon Fraser Univ, Dept Chem, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[3] Tohoku Univ, Inst Excellence Higher Educ, Sendai 9808576, Japan
[4] Tohoku Univ, Dept Phys, Sendai 9808576, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
CONFIGURATION-SPACE APPROACH; ROTATIONAL STATES; MODEL-EQUATIONS; NUCLEAR; MOTION; SYSTEM; ENERGY;
D O I
10.1103/PhysRevC.110.014325
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The nucleus in the center-of-mass frame is described by 3A-3 independent coordinates, including three Euler angles and three variables rho, beta, and gamma to describe orientation, size, and shape of the nuclear inertia ellipsoid as well as 3A-9 generalized Euler angles to describe internal motion of the nucleons. Based on the idea that the incompressible nucleus has constant density, we suggest a definition of the deformation parameter beta. It allows us to derive the Hamiltonian, which describes large-amplitude collective motions. At beta << 1 it reduces to a sum of the Bohr Hamiltonian and the Hamiltonian of monopole rho vibrations. As a result of straightforward calculations we obtain explicit expressions for all the inertial parameters as functions of the variables rho, beta, and gamma.
引用
收藏
页数:10
相关论文
共 50 条