Considerations for Developing a Generalized Gradebook for an Open-Source Intelligent Tutoring System Framework

被引:0
|
作者
Sinatra, Anne M. [1 ]
机构
[1] US Army Combat Capabil Dev Command DEVCOM Soldier, Orlando, FL 32826 USA
来源
关键词
Intelligent Tutoring Systems; Gradebook; Generalized Intelligent Framework for Tutoring; GIFT;
D O I
10.1007/978-3-031-34735-1_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current paper describes a use case of an open-source intelligent tutoring system (ITS) framework, the Generalized Intelligent Framework for Tutoring (GIFT). GIFT has been primarily used by researchers, and it is a highly flexible system that allows for tutoring to be created in the topic area of the author's choice. While there are tools to output data from GIFT, there is not a traditional standardized gradebook tool that can be easily used by a non-researcher. Due to the generalizable design of GIFT, and the unique characteristics of intelligent tutoring performance, this is an interesting design challenge. The current paper discusses the current state of data export in GIFT, describes the adaptive courseflow approach to tutoring in GIFT, and discusses potential approaches to visualizing adaptive tutoring data in a way that instructors can easily understand and gain the maximum knowledge from.
引用
收藏
页码:162 / 173
页数:12
相关论文
共 50 条
  • [31] BioJava']Java:: an open-source framework for bioinformatics
    Holland, R. C. G.
    Down, T. A.
    Pocock, M.
    Prlic, A.
    Huen, D.
    James, K.
    Foisy, S.
    Draeger, A.
    Yates, A.
    Heuer, M.
    Schreiber, M. J.
    BIOINFORMATICS, 2008, 24 (18) : 2096 - 2097
  • [32] DAQling: an open-source data acquisition framework
    Boretto, Marco
    Brylinski, Wojciech
    Miotto, Giovanna Lehmann
    Gamberini, Enrico
    Sipos, Roland
    Sonesten, Viktor Vilhelm
    24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
  • [33] An open-source parallel EMT simulation framework
    Xiong, Min
    Wang, Bin
    Vaidhynathan, Deepthi
    Maack, Jonathan
    Reynolds, Matthew J.
    Hoke, Andy
    Sun, Kai
    Ramasubramanian, Deepak
    Verma, Vishal
    Tan, Jin
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 235
  • [34] SuperConga: An open-source framework for mesoscopic superconductivity
    Holmvall, P.
    Wall Wennerdal, N.
    Hakansson, M.
    Stadler, P.
    Shevtsov, O.
    Lofwander, T.
    Fogelstrom, M.
    APPLIED PHYSICS REVIEWS, 2023, 10 (01):
  • [35] Open-source Framework for the Concurrent Design of CubeSats
    Gateau, Thibault
    Senaneuch, Lucien
    Cordero, Sophia Salas
    Vingerhoeds, Rob
    7TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2021), 2021,
  • [36] Mono & the .NET Framework - An open-source alternative
    de Icaza, M
    Jepson, B
    DR DOBBS JOURNAL, 2002, 27 (01): : 21 - +
  • [37] A framework for validating open-source pulse sequences
    Tong, Gehua
    Gaspar, Andreia S.
    Qian, Enlin
    Ravi, Keerthi Sravan
    Vaughan, John Thomas, Jr.
    Nunes, Rita G.
    Geethanath, Sairam
    MAGNETIC RESONANCE IMAGING, 2022, 87 : 7 - 18
  • [38] Intelligent agents in games: Review with an open-source tool
    Vitek, Matej
    Peer, Peter
    ADVANCES IN COMPUTERS, VOL 116, 2020, 116 : 251 - 303
  • [39] iPD: An Open-source intelligent Physical Design Toolchain
    Li, Xingquan
    Tao, Simin
    Chen, Shijian
    Zeng, Zhisheng
    Huang, Zhipeng
    Wu, Hongxi
    Li, Weiguo
    Huang, Zengrong
    Ni, Liwei
    Zhao, Xueyan
    Liu, He
    Long, Shuaiying
    Liu, Ruizhi
    Lin, Xiaoze
    Yang, Bo
    Huang, Fuxing
    Yang, Zonglin
    Qiu, Yihang
    Shao, Zheqing
    Liu, Jikang
    Liang, Yuyao
    Xie, Biwei
    Bao, Yungang
    Yu, Bei
    29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, : 83 - 88
  • [40] An optimized intelligent open-source MLaaS framework for user-friendly clustering and anomaly detection
    Eldahshan, Kamal A.
    Abutaleb, Gaber E.
    Elemary, Berihan R.
    Ebeid, Ebeid A.
    Alhabshy, AbdAllah A.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (18): : 26658 - 26684