Genome-wide identification of the GATA gene family in melon (Cucumis melo) and analysis of their expression characteristics under biotic and abiotic stresses

被引:0
|
作者
Zheng, Ling [1 ]
Tang, Lin [1 ]
Li, Jinbo [1 ]
机构
[1] Luoyang Normal Univ, Dept Biol, Luoyang, Henan, Peoples R China
来源
关键词
Cucumis melo; GATA gene family; drought stress; heavy metal lead stress; Fusarium wilt infection; TRANSCRIPTION FACTORS; EVOLUTION; DATABASE;
D O I
10.3389/fpls.2024.1462924
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
GATA transcription factors are an important class of transcription factors in plants, known for their roles in tissue development, signal transduction, and responses to biotic and abiotic stresses. To date, there have been no reports on the GATA gene family in melon (Cucumis melo). In this study, 24 CmGATA genes were identified from the melon genome. These family members exhibit significant differences in protein length, molecular weight, and theoretical isoelectric point and are primarily located in the nucleus. Based on the classification of Arabidopsis thaliana GATA members, the phylogenetic tree divided them into four groups: group I, group II, group III, and group IV, containing 10, 8, 4, and 2 genes, respectively. Notably, CmGATA genes within the same group have highly conserved protein motifs and similar exon-intron structures. The CmGATA family members are unevenly distributed across 10 chromosomes, with six pairs of segmentally duplicated genes and one pair of tandemly duplicated genes, suggesting that gene duplication may be the primary factor in the expansion of the CmGATA family. Melon shares 21, 4, 38, and 34 pairs of homologous genes with A. thaliana, Oryza sativa, Cucumis sativus, and Citrullus lanatus, respectively. The promoter regions are enriched with various cis-acting elements related to growth and development (eight types), hormone regulation (nine types), and stress responses (six types). Expression patterns indicate that different CmGATA family members are significantly expressed in seeds, roots, stems, leaves, tendrils, mesocarp, and epicarp, exhibiting distinct tissue-specific expression characteristics. Quantitative fluorescence analysis revealed that five genes, CmGATA3, CmGATA7, CmGATA16, CmGATA22, and CmGATA24, may be highly active under 48-h drought stress, while CmGATA1 and CmGATA22 may enhance melon resistance to heavy metal lead stress. Additionally, CmGATA22 and CmGATA24 are suggested to regulate melon resistance to Fusarium wilt infection. CmGATA22 appears to comprehensively regulate melon responses to both biotic and abiotic stresses. Lastly, potential protein interaction networks were predicted for the CmGATA family members, identifying CmGATA8 as a potential hub gene and predicting 2,230 target genes with enriched GO functions. This study preliminarily explores the expression characteristics of CmGATA genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, providing a theoretical foundation for molecular mechanisms in melon improvement and stress resistance.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Characterization of 14-3-3 gene family and their expression patterns under abiotic and biotic stresses in melon (Cucumis melo L.)
    Gaoyuan Zhang
    Bingqiang Wei
    [J]. Horticulture, Environment, and Biotechnology, 2023, 64 : 1039 - 1054
  • [12] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    [J]. BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [13] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    [J]. BIOCELL, 2022, 46 (08) : 1947 - 1958
  • [14] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    [J]. GENES, 2023, 14 (06)
  • [15] Genome-wide identification, characterization, and expression analysis of the Ovate family protein in Oryza sativa under biotic and abiotic stresses
    Ahmad, Sheraz
    Ahmad, Nazir
    Bayar, Jalal
    [J]. PLANT STRESS, 2023, 10
  • [16] Genome-Wide Identification of GATA Family Genes in Phoebe bournei and Their Transcriptional Analysis under Abiotic Stresses
    Yin, Ziyuan
    Liao, Wenhai
    Li, Jingshu
    Pan, Jinxi
    Yang, Sijia
    Chen, Shipin
    Cao, Shijiang
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [17] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Xiao, Jie
    Hu, Rui
    Gu, Ting
    Han, Jiapeng
    Qiu, Ding
    Su, Peipei
    Feng, Jialu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    [J]. BMC GENOMICS, 2019, 20 (1)
  • [18] Genome-Wide GRAS Gene Family Analysis Reveals the Classification, Expression Profiles in Melon (Cucumis melo L.)
    Bi, Yanfei
    Wei, Bin
    Meng, Ying
    Li, Zhongzhao
    Tang, Zhenghui
    Yin, Feng
    Qian, Chuntao
    [J]. PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2021, 90 (04) : 1161 - 1175
  • [19] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Jie Xiao
    Rui Hu
    Ting Gu
    Jiapeng Han
    Ding Qiu
    Peipei Su
    Jialu Feng
    Junli Chang
    Guangxiao Yang
    Guangyuan He
    [J]. BMC Genomics, 20
  • [20] Genome-wide identification and analysis of the SGR gene family in Cucumis melo L.
    Bade, R. G.
    Bao, M. L.
    Jin, W. Y.
    Ma, Y.
    Niu, Y. D.
    Hasi, A.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2016, 15 (04):