A Quantum Behaved Particle Swarm Optimization with a Chaotic Operator

被引:0
|
作者
Li, Mingming [1 ]
Cao, Dandan [1 ,2 ]
Gao, Hao [3 ]
机构
[1] Beijing Inst Control Engn, Beijing, Peoples R China
[2] China Acad Space Technol, Hangzhou Inst, Hangzhou, Peoples R China
[3] Nanjing Univ Posts & Commun, Nanjing, Peoples R China
关键词
quantum behaved; particle swarm optimization; chaotic operator; ARTIFICIAL BEE COLONY; ALGORITHM;
D O I
10.1007/978-981-99-9109-9_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a popular population based Evolutionary Algorithm, quantum behaved particle swarm optimization (QPSO) has applied widely in many real-world problems. In this paper, for further enhancing the performance of QPSO, we proposed a popular chaotic map into it. The new chaotic operator not only accelerate the convergence rate but also strengthen the search ability in the total space of the original QPSO. Furthermore, we verify the revised algorithm on some traditional benchmark functions. The final compared results on the images prove the superior of our algorithm.
引用
收藏
页码:212 / 218
页数:7
相关论文
共 50 条
  • [31] Quantum-behaved particle swarm optimization for integer programming
    Liu, Jing
    Sun, Jun
    Xu, Wenbo
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 1042 - 1050
  • [32] A quantum particle swarm optimizer with chaotic mutation operator
    Coelho, Leandro dos Santos
    CHAOS SOLITONS & FRACTALS, 2008, 37 (05) : 1409 - 1418
  • [33] Quantum-behaved particle swarm optimization based on solitons
    Fallahi, Saeed
    Taghadosi, Mohamadreza
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] Quantum-behaved particle swarm optimization based on solitons
    Saeed Fallahi
    Mohamadreza Taghadosi
    Scientific Reports, 12
  • [35] On Extending Quantum Behaved Particle Swarm Optimization to MultiObjective Context
    AlBaity, Heyam
    Meshoul, Souham
    Kaban, Ata
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [36] Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    Sudheer, Ch
    Anand, Nitin
    Panigrahi, B. K.
    Mathur, Shashi
    NEUROCOMPUTING, 2013, 101 : 18 - 23
  • [37] Parameter selection of quantum-behaved Particle Swarm Optimization
    Sun, J
    Xu, WB
    Liu, J
    ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 543 - 552
  • [38] An improved cooperative quantum-behaved particle swarm optimization
    Li, Yangyang
    Xiang, Rongrong
    Jiao, Licheng
    Liu, Ruochen
    SOFT COMPUTING, 2012, 16 (06) : 1061 - 1069
  • [39] An improved cooperative quantum-behaved particle swarm optimization
    Yangyang Li
    Rongrong Xiang
    Licheng Jiao
    Ruochen Liu
    Soft Computing, 2012, 16 : 1061 - 1069
  • [40] Quantum-behaved Particle Swarm Optimization clustering algorithm
    Sun, Jun
    Xu, Wenbo
    Ye, Bin
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 340 - 347