ginmappeR: an unified approach for integrating gene and protein identifiers across biological sequence databases

被引:1
|
作者
Sola, Fernando [1 ]
Ayala, Daniel [1 ]
Pulido, Marina [2 ,3 ,4 ]
Ayala, Rafael [5 ]
Lopez-Cerero, Lorena [2 ,3 ,4 ]
Hernandez, Inma [1 ]
Ruiz, David [1 ]
机构
[1] Univ Seville, SCORE Lab, DEAL, ETSII, Reina Mercedes Ave S-N, Seville 41012, Spain
[2] Univ Seville, Dept Microbiol, Seville 41009, Spain
[3] Univ Seville, Virgen Macarena Univ Hosp, Inst Biomed Seville, CSIC, Seville 41013, Spain
[4] Ctr Invest Biomed Red Enfermedades Infecciosas CI, Madrid 28029, Spain
[5] Technol Grad Univ, Okinawa Inst Sci, Mol Cryo Electron Microscopy Unit, Onnason, Okinawa 9040411, Japan
来源
BIOINFORMATICS ADVANCES | 2024年 / 4卷 / 01期
关键词
D O I
10.1093/bioadv/vbae129
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce ginmappeR, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, ginmappeR streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.Availability and implementation from Bioconductor: https://bioconductor.org/packages/ginmappeR
引用
收藏
页数:5
相关论文
共 43 条
  • [21] A Bayesian approach for estimating protein-protein interactions by integrating structural and non-structural biological data
    Rehman, Hafeez Ur
    Bari, Inam
    Ali, Anwar
    Mahmood, Haroon
    MOLECULAR BIOSYSTEMS, 2017, 13 (12) : 2592 - 2602
  • [22] Systems biology-the transformative approach to integrate sciences across disciplines Systems Biology: Integrating Biological Sciences
    Madhavan, Maya
    Mustafa, Sabeena
    PHYSICAL SCIENCES REVIEWS, 2022, : 2523 - 2545
  • [23] Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts
    Nair, Surag
    Kim, Daniel S.
    Perricone, Jacob
    Kundaje, Anshul
    BIOINFORMATICS, 2019, 35 (14) : I108 - I116
  • [24] A Sectioning and Database Enrichment Approach for Improved Peptide Spectrum Matching in Large, Genome-Guided Protein Sequence Databases
    Kumar, Praveen
    Johnson, James E.
    Easterly, Caleb
    Mehta, Subina
    Sajulga, Ray
    Nunn, Brook
    Jagtap, Pratik D.
    Griffin, Timothy J.
    JOURNAL OF PROTEOME RESEARCH, 2020, 19 (07) : 2772 - 2785
  • [25] Sequence and expression of a novel mouse gene PRDC (protein related to DAN and cerberus) identified by a gene trap approach
    Minabe-Saegusa, C
    Saegusa, H
    Tsukahara, M
    Noguchi, S
    DEVELOPMENT GROWTH & DIFFERENTIATION, 1998, 40 (03) : 343 - 353
  • [26] Essential Protein Identification in Cancer: A Graph-Based Approach Integrating Topological and Biological Features in PPI Networks
    Trilochan Rout
    Anjali Mohapatra
    Madhabananda Kar
    Dillip Kumar Muduly
    SN Computer Science, 5 (7)
  • [27] Evaluation of the Protein Sequence Tags (qPST™) approach for quantitative differential proteomic analyses of complex biological samples
    Hamon, C.
    Baumann, C.
    Schafer, J.
    Prinz, T.
    Kienle, S.
    Schwarz, J.
    Kuhn, K.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S322 - S322
  • [28] A Bayesian approach to joint modeling of protein-DNA binding, gene expression and sequence data
    Xie, Yang
    Pan, Wei
    Jeong, Kyeong S.
    Xiao, Guanghua
    Khodursky, Arkady B.
    STATISTICS IN MEDICINE, 2010, 29 (04) : 489 - 503
  • [29] Characterization of Newcastle disease virus vaccines by biological properties and sequence analysis of the hemagglutinin-neuaraminidase protein gene
    Seal, BS
    King, DJ
    Bennett, JD
    VACCINE, 1996, 14 (08) : 761 - 766
  • [30] Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles
    Matsubara, Teppei
    Ochiai, Tomoshiro
    Hayashida, Morihiro
    Akutsu, Tatsuya
    Nacher, Jose C.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2019, 17 (03)