Effects of substrate (track-etched filter) properties on the performance of forward osmosis membranes

被引:1
|
作者
Popova, Alena [1 ]
Shintani, Takuji [1 ]
Fujioka, Takahiro [1 ]
机构
[1] Nagasaki Univ, Grad Sch Integrated Sci & Technol, 1-14 Bunkyo Machi, Nagasaki 8528521, Japan
关键词
Forward osmosis; Track-etched filter; Water flux; Polyamide; Substrate properties; FILM COMPOSITE MEMBRANE; INTERFACIAL POLYMERIZATION; PHYSIOCHEMICAL PROPERTIES; DIFFERENT SURFACTANTS; POLYAMIDE; FABRICATION; MORPHOLOGY; FTIR; FLUX; XPS;
D O I
10.1016/j.memsci.2024.122865
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Highly permeable membranes can improve the validity of water treatment using forward osmosis (FO) membranes. This study aims to identify the effects of substrate (track-etched (TE) filter) properties on the permeability of FO membranes. The polyamide active layer properties of three types of TE filters with similarly-sized pore diameters (0.2 mu m) were observed to be equivalent regardless of the substrate porosity (13.7%-15.8 %) and substrate thickness (10-25 mu m). Under the same fabrication protocol using 1.5 wt% m-phenylenediamine (MPD) solution with 0.25 wt% sodium dodecyl sulfate (SDS) addition, the increased porosity of the TE filter increased water flux. This suggested that further reduction in thickness and increase in porosity can enhance the water flux. The addition of SDS to an MPD solution was crucial in maximizing the water flux of TE filter-based FO membranes, and the other approaches (no surfactant addition or the addition of Tween80 or hexadecyltrimethylammonium bromide) produced lower water flux. The optimized fabrication protocol presented the highest water flux of 43 L/m2h and reverse salt flux of 10 g/m2h with the draw (1.0 M NaCl) and feed (pure water) solutions. This study determined the best approach for forming a highly permeable PA active layer on TE filters.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ion transport across bilayer lipid membranes using a track-etched membrane filter
    Chuang, Weipai
    Sowa, Keisei
    Kitazumi, Yuki
    Shirai, Osamu
    ELECTROCHIMICA ACTA, 2024, 497
  • [22] PROTEIN FOULING OF POLYCARBONATE TRACK-ETCHED MICROFILTRATION MEMBRANES
    TRACEY, EM
    DAVIS, RH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 44 - BIOT
  • [23] Plasma polymer coatings on track-etched membranes.
    Fuhrer, A
    Vaithianathan, T
    Griesser, HJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 401 - POLY
  • [24] CHARGE TRANSPORT IN MICROCAPILLARIES - STUDIES WITH TRACK-ETCHED MEMBRANES
    ANDERSON, JL
    QUINN, JA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (03) : C109 - &
  • [25] Composite Track-Etched Membranes: Synthesis and Multifaced Applications
    Mashentseva, Anastassiya A.
    Sutekin, Duygu S.
    Rakisheva, Saniya R.
    Barsbay, Murat
    POLYMERS, 2024, 16 (18)
  • [26] PROTEIN FOULING OF TRACK-ETCHED POLYCARBONATE MICROFILTRATION MEMBRANES
    TRACEY, EM
    DAVIS, RH
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 167 (01) : 104 - 116
  • [27] Pore size distributions of nanoporous track-etched membranes
    Chlebny, I.
    Doudin, B.
    Ansermet, J-Ph.
    Nanostructured Materials, 1993, 2 (06):
  • [28] Membrane pores - From biology to track-etched membranes
    Bashford, CL
    BIOSCIENCE REPORTS, 1995, 15 (06) : 553 - 565
  • [29] Structure and Properties of Poly(4-methylpentene-1) Track-Etched Membranes
    Syrtsova, D. A.
    Teplyakov, V. V.
    Kochnev, Yu. K.
    Nechaev, A. N.
    Apel, P. Yu.
    Adeniyi, O. R.
    Petrik, L.
    PETROLEUM CHEMISTRY, 2016, 56 (04) : 294 - 302
  • [30] Structure and properties of poly(4-methylpentene-1) track-etched membranes
    D. A. Syrtsova
    V. V. Teplyakov
    Yu. K. Kochnev
    A. N. Nechaev
    P. Yu. Apel
    O. R. Adeniyi
    L. Petrik
    Petroleum Chemistry, 2016, 56 : 294 - 302