Highly adaptive single-shot surface shape distortion measurement method for high-power lasers

被引:0
|
作者
Zhuang, Yongchen [1 ,2 ,3 ]
Wang, Deen [4 ]
Lin, Shibing [1 ,2 ,3 ]
Zheng, Yamin [1 ,2 ,3 ]
Guo, Liquan [1 ,2 ,3 ]
Zhang, Yifan [1 ,2 ,3 ]
Huang, Lei [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Precis Space time Informat Sensing T, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Precis Measurement & Instruments, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Key Lab Photon Control Technol, Minist Educ, Beijing 100084, Peoples R China
[4] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 06期
基金
中国国家自然科学基金;
关键词
WAVE-FRONT CONTROL; PHASE-MEASURING DEFLECTOMETRY; THERMAL DEFORMATIONS; FRINGE PROJECTION; SYSTEMS;
D O I
10.1016/j.xcrp.2024.102026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Real-time online monitoring of the surface shape distortion (SSD) of the deformable mirror (DM) is essential to the design, control, and performance of high-power laser facilities. Here, we report a single-shot highly adaptive SSD measurement method based on deep learning for surface shape changes measurement of the DM in high-power lasers. This method could adapt to the narrow cavity spaces in high-power laser facilities and enable fast surface shape reconstruction by utilizing a reflected fringe image and a trained network. The deep learning network, using a fully attentional transformer-based backbone for long-range dependency modeling, enhances surface shape reconstruction speed and precision by focusing on global feature extraction and reconstruction over local convolutional features. The results of the simulation and experiment show that the method could accurately predict the surface shape changes of DM in high-power lasers, indicating high speed and strong adaptability in the SSD reconstruction.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] High-power, single-mode fiber lasers advance
    Schreiber, Thomas
    Tuennermann, Andreas
    Thoss, Andreas
    LASER FOCUS WORLD, 2017, 53 (06): : 37 - 42
  • [42] High power single-shot laser ablation of silicon with nanosecond 355 nm
    Karnakis, D. M.
    APPLIED SURFACE SCIENCE, 2006, 252 (22) : 7823 - 7825
  • [43] SURFACE ALLOYING OF STEELS USING HIGH-POWER CONTINUOUS LASERS
    MOORE, PG
    JOURNAL OF METALS, 1979, 31 (12): : 80 - 80
  • [44] Highly-Efficient High-Power Pumps for QCW Fiber Lasers
    Moshegov, N.
    Berezin, I.
    Komissarov, A.
    Trubenko, P.
    Miftakhutdinov, D.
    Berishev, I.
    Chuyanov, V.
    Strougov, N.
    Ovtchinnikov, A.
    Gapontsev, V.
    HIGH-POWER DIODE LASER TECHNOLOGY XVII, 2019, 10900
  • [45] Self-adaptive compensation for the thermal lens in high-power lasers
    Graf, T
    Wyss, E
    Weber, HP
    ADVANCED SOLID-STATE LASERS, PROCEEDINGS, 2001, 50 : 688 - 692
  • [46] Modeling optically addressed deformable mirrors for adaptive high-power lasers
    Schmidt, Kevin
    Wittmuess, Philipp
    Piehler, Stefan
    Ahmed, Marwan Abdou
    Graf, Thomas
    Sawodny, Oliver
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (07) : 506 - 520
  • [47] Image processing method for laser damage probability measurement by single-shot of laser pulse
    Hu, Jianping
    Zhou Xin
    Li Shugang
    Liu Zhicao
    Pan Feng
    Chen Songlin
    OPTICS EXPRESS, 2011, 19 (11): : 10625 - 10631
  • [48] Single-Shot Digital Holographic Interferometry Using a High Power Pulsed Laser for Full Field Measurement of Traveling Waves
    De Greef, Daniel
    Dirckx, Joris J. J.
    10TH INTERNATIONAL CONFERENCE ON VIBRATION MEASUREMENTS BY LASER AND NONCONTACT TECHNIQUES - AIVELA 2012, 2012, 1457 : 444 - 450
  • [49] A simple method for timing an XFEL source to high-power lasers
    Geloni, Gianluca
    Saldin, Evgeni
    Schneidmiller, Evgeni
    Yurkov, Mikhail
    OPTICS COMMUNICATIONS, 2008, 281 (14) : 3762 - 3770
  • [50] A reflective method for the optical axis calibration of high-power lasers
    Xie, Xiaoguang
    Hu, Yuan
    Feng, Jun
    Xu, Wei
    Li, Miao
    MEASUREMENT, 2025, 246