Modeling of a lattice model for nonlinear wave propagation in phononic crystals

被引:0
|
作者
Takayanagi, Jun [1 ]
Doi, Yusuke [1 ]
Nakatani, Akihiro [1 ]
机构
[1] Osaka Univ, Div Mech Engn, Grad Sch Engn, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
来源
关键词
phononic crystal; nonlinear wave; switching;
D O I
10.1587/nolta.14.475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a nonlinear lattice model to investigate the dynamics of nonlinear behavior in phononic crystals (PnCs). Two types of mass points and springs are introduced in the model to reproduce the difference in material properties between the scatterers and background in PnCs. The nonlinearity is introduced to the model by changing the mass of each mass point depending on the displacement gradient at the mass point. We numerically confirm that both the 1D and 2D models have the bandgap in the linear dispersion relation. Moreover, in both model, switching behavior of wave propagation is found.
引用
收藏
页码:475 / 490
页数:16
相关论文
共 50 条
  • [21] Effective phononic crystals for non-Cartesian elastic wave propagation
    Arretche, Ignacio
    Matlack, Kathryn H.
    [J]. PHYSICAL REVIEW B, 2020, 102 (13)
  • [22] WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS
    Li, Jinqiang
    Li, Fengming
    Wang, Yuesheng
    Kishimoto, Kikuo
    [J]. ACTA MECHANICA SOLIDA SINICA, 2008, 21 (06) : 507 - 516
  • [23] A Nonlinear Wave Propagation Model
    Vasile, Ovidiu
    Bugaru, Mihai
    [J]. ROMANIAN JOURNAL OF ACOUSTICS AND VIBRATION, 2006, 3 (01): : 37 - 41
  • [24] Modeling of Wave Propagation in the nonlinear electrodynamics
    Vshivtseva, Polina A.
    [J]. PROCEEDINGS OF THE 3RD INT CONF ON APPLIED MATHEMATICS, CIRCUITS, SYSTEMS, AND SIGNALS/PROCEEDINGS OF THE 3RD INT CONF ON CIRCUITS, SYSTEMS AND SIGNALS, 2009, : 76 - 77
  • [25] Lattice Boltzmann model for wave propagation
    Zhang, Jianying
    Yan, Guangwu
    Shi, Xiubo
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [26] Modulated phononic crystals: Non-reciprocal wave propagation and Willis materials
    Nassar, H.
    Xu, X. C.
    Norris, A. N.
    Huang, G. L.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 101 : 10 - 29
  • [27] PROPAGATION OF SURFACE ACOUSTIC WAVE IN ONE-DIMENSIONAL PIEZOELECTRIC PHONONIC CRYSTALS
    Yang, Guang-ying
    Du, Jian-ke
    Wang, Ji
    [J]. 2014 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA), 2014, : 366 - 369
  • [28] Elastic wave propagation along waveguides in three-dimensional phononic crystals
    Chandra, H
    Deymier, PA
    Vasseur, JO
    [J]. PHYSICAL REVIEW B, 2004, 70 (05) : 054302 - 1
  • [29] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croënne, Charles
    Vasseur, Jérôme O.
    Bou Matar, Olivier
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    [J]. Journal of the Acoustical Society of America, 2016, 139 (06): : 3288 - 3295
  • [30] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croenne, Charles
    Vasseur, Jerome O.
    Matar, Olivier Bou
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (06): : 3287 - 3294