Impact of Heated Wavy Wall and Hybrid Nanofluid on Natural Convection in a Triangular Enclosure with Embedded Cold Cylinder under Inclined Magnetic Field

被引:2
|
作者
Munir, Shahzad [1 ]
Bin Turabi, Yasir Ul Umair [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Pk Rd, Islamabad 45550, Pakistan
关键词
MHD; Hybrid nanofluid; Natural convection; Wavy enclosure; Embedded cylinders; ENTROPY GENERATION; CAVITY; FLOW;
D O I
10.1007/s13369-024-09450-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this work is to examine the impact of the heated wavy wall and hybrid nanofluid (Ag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ag$$\end{document}-MgO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MgO$$\end{document}-water) on natural convection in a triangular enclosure with an embedded cold cylinder under an inclined magnetic field. The topic has significance because it is important to the enhancement of thermal management systems in many kinds of technological industrial applications, including heat exchangers, solar energy harvesting, and electronic cooling. The major goal is to understand how geometric alterations, magnetic field intensity, and nanofluid characteristics affect heat transmission and entropy formation within the enclosure. A numerical simulation approach is employed, solving the governing equations using the finite element method. In this study, the wavy triangular cavity is utilized to examine important parameters and their ranges, including Hartmann number Ha(=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha(=0$$\end{document}-50)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50)$$\end{document}, Rayleigh number Ra(=102\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra(={10}<^>{2}$$\end{document}-106)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${10}<^>{6})$$\end{document}, volume fraction phi(=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (=0.01$$\end{document}-0.07)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0. 07)$$\end{document}, magnetic field inclination gamma(=0o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (={0}<^>{o}$$\end{document}-90o)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${90}<^>{o})$$\end{document}, number of undulations N(=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(=0$$\end{document}-4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4)$$\end{document}, and wave amplitude alpha(=0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (=0.03$$\end{document}-0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1)$$\end{document} of the heated wall. The findings show that the heat transport rate rises with the increasing number of undulations (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}) and wave amplitude (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}), while it reduces with an increasing Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}). The average total entropy generation has an inverse relation with (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}) and a direct relation with volume fraction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}). The velocity profile increases with the rising Rayleigh number (Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra$$\end{document}) and volume fraction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}). Moreover, the embedded cold cylinder in the center of the cavity has a significant influence the heat transfer and flow control.
引用
收藏
页码:4007 / 4020
页数:14
相关论文
共 50 条
  • [31] Natural Convection of Ternary Hybrid Nanofluid in a Differential-Heated Enclosure with Non-Uniform Heating Wall
    Rajesh, Vemula
    Sheremet, Mikhail
    MICROMACHINES, 2023, 14 (05)
  • [32] MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM
    M. Sheikholeslami
    M. Gorji-Bandpy
    D. D. Ganji
    Soheil Soleimani
    Neural Computing and Applications, 2014, 24 : 873 - 882
  • [33] MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM
    Sheikholeslami, M.
    Gorji-Bandpy, M.
    Ganji, D. D.
    Soleimani, Soheil
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (3-4): : 873 - 882
  • [34] Simulating natural convection and entropy generation of a nanofluid in an inclined enclosure under an angled magnetic field with a circular fin and radiation effect
    Zhang, Rui
    Ghasemi, Ali
    Barzinjy, Azeez A.
    Zareei, Maliheh
    Hamad, Samir M.
    Afrand, Masoud
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (06) : 3803 - 3816
  • [35] Simulating natural convection and entropy generation of a nanofluid in an inclined enclosure under an angled magnetic field with a circular fin and radiation effect
    Rui Zhang
    Ali Ghasemi
    Azeez A. Barzinjy
    Maliheh Zareei
    Samir M. Hamad
    Masoud Afrand
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 3803 - 3816
  • [36] Effect of inclined magnetic field on natural convection and entropy generation of non-Newtonian ferrofluid in a square cavity having a heated wavy cylinder
    Shampa Sarker Tuli
    Litan Kumar Saha
    Nepal Chandra Roy
    Journal of Engineering Mathematics, 2023, 141
  • [37] Effect of inclined magnetic field on natural convection and entropy generation of non-Newtonian ferrofluid in a square cavity having a heated wavy cylinder
    Tuli, Shampa Sarker
    Saha, Litan Kumar
    Roy, Nepal Chandra
    JOURNAL OF ENGINEERING MATHEMATICS, 2023, 141 (01)
  • [38] Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles
    A. S. Dogonchi
    Tahar Tayebi
    Ali J. Chamkha
    D. D. Ganji
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 661 - 671
  • [39] Numerical simulation of natural convection within wavy square enclosure filled with nanofluid under magnetic field using EFGM with parallel algorithm
    Nishad, Surabhi
    Jain, Sapna
    Bhargava, Rama
    International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31 (12): : 3505 - 3526
  • [40] Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles
    Dogonchi, A. S.
    Tayebi, Tahar
    Chamkha, Ali J.
    Ganji, D. D.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (01) : 661 - 671