Impact of Heated Wavy Wall and Hybrid Nanofluid on Natural Convection in a Triangular Enclosure with Embedded Cold Cylinder under Inclined Magnetic Field

被引:2
|
作者
Munir, Shahzad [1 ]
Bin Turabi, Yasir Ul Umair [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Pk Rd, Islamabad 45550, Pakistan
关键词
MHD; Hybrid nanofluid; Natural convection; Wavy enclosure; Embedded cylinders; ENTROPY GENERATION; CAVITY; FLOW;
D O I
10.1007/s13369-024-09450-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this work is to examine the impact of the heated wavy wall and hybrid nanofluid (Ag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ag$$\end{document}-MgO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MgO$$\end{document}-water) on natural convection in a triangular enclosure with an embedded cold cylinder under an inclined magnetic field. The topic has significance because it is important to the enhancement of thermal management systems in many kinds of technological industrial applications, including heat exchangers, solar energy harvesting, and electronic cooling. The major goal is to understand how geometric alterations, magnetic field intensity, and nanofluid characteristics affect heat transmission and entropy formation within the enclosure. A numerical simulation approach is employed, solving the governing equations using the finite element method. In this study, the wavy triangular cavity is utilized to examine important parameters and their ranges, including Hartmann number Ha(=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha(=0$$\end{document}-50)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50)$$\end{document}, Rayleigh number Ra(=102\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra(={10}<^>{2}$$\end{document}-106)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${10}<^>{6})$$\end{document}, volume fraction phi(=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (=0.01$$\end{document}-0.07)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0. 07)$$\end{document}, magnetic field inclination gamma(=0o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (={0}<^>{o}$$\end{document}-90o)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${90}<^>{o})$$\end{document}, number of undulations N(=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(=0$$\end{document}-4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4)$$\end{document}, and wave amplitude alpha(=0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (=0.03$$\end{document}-0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1)$$\end{document} of the heated wall. The findings show that the heat transport rate rises with the increasing number of undulations (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}) and wave amplitude (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}), while it reduces with an increasing Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}). The average total entropy generation has an inverse relation with (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}) and a direct relation with volume fraction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}). The velocity profile increases with the rising Rayleigh number (Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra$$\end{document}) and volume fraction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}). Moreover, the embedded cold cylinder in the center of the cavity has a significant influence the heat transfer and flow control.
引用
收藏
页码:4007 / 4020
页数:14
相关论文
共 50 条
  • [1] Natural convection flow of a nanofluid in an enclosure under an inclined uniform magnetic field
    Tezer-Sezgin, Munevver
    Bozkaya, Canan
    Turk, Onder
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2016, 25 (1-2): : 2 - 23
  • [2] Impact of inclined magnetic field on natural convection in ferrofluid within a semi-circular enclosure with a heated wavy surface
    Ali, Asad
    Khan, Noor Zeb
    Pan, Kejia
    Shah, Murad Ali
    Badshah, Zeeshan
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024,
  • [3] Mixed Convection of Hybrid Nanofluid in an Inclined Enclosure with a Circular Center Heater under Inclined Magnetic Field
    Munawar, Sufian
    Saleem, Najma
    Ahmad Khan, Waqar
    Nasir, Sumiya
    COATINGS, 2021, 11 (05)
  • [4] Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid
    Mahmoudi, Amir Houshang
    Pop, Ioan
    Shahi, Mina
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 59 : 126 - 140
  • [5] Impact of wavy porous layer on mixed convection flow of a hybrid nanofluid in an enclosure under the effect of partial magnetic field
    Hussain, Shafqat
    Qureshi, Muhammad Amer
    Geridonmez, Bengisen Pekmen
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023,
  • [6] Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure
    Hatami, M.
    Safari, H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 1053 - 1057
  • [7] Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls
    Ece, Mehmet Cem
    Bueyuek, Elif
    MECCANICA, 2007, 42 (05) : 435 - 449
  • [8] Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls
    Mehmet Cem Ece
    Elif Büyük
    Meccanica, 2007, 42 : 435 - 449
  • [9] Hydromagnetic natural convection in a wavy-walled enclosure equipped with hybrid nanofluid and heat generating cylinder
    Ali, Mohammad Mokaddes
    Akhter, Rowsanara
    Alim, M. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5245 - +
  • [10] MHD natural convection in a wavy nanofluid enclosure with an internally corrugated porous cylinder
    Allah, H. Nehad Abid
    Alnasur, Fawzi Sh.
    Abdulkadhim, Ammar
    Abed, Isam Mejbel
    Said, Nejla Mahjoub
    Abed, Azher M.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2024, 18 (01):