Multi-scale morphology-aided deep medical image segmentation

被引:3
|
作者
Ghosh, Susmita [1 ]
Das, Swagatam [1 ]
机构
[1] Indian Stat Inst, Elect & Commun Sci Unit, Kolkata, India
关键词
Medical image segmentation; Mathematical morphology; Multiscale trainable morphological modules; Deep convolutional networks; UNet; TRANSFORMER; ATTENTION; FRAMEWORK; NETWORK; NET;
D O I
10.1016/j.engappai.2024.109047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation serves as a critical tool for healthcare professionals, enabling the precise extraction of Regions of Interest (ROIs) from clinical images at the pixel level. The evolution of computer vision and machine learning algorithms has streamlined this labor-intensive segmentation process, which traditionally necessitates domain expertise. The intrinsic challenges posed by clinical images - such as irregular shapes, varying sizes, low contrast, and intricate details within specific areas, contribute to the intricacy of the task. In response to these complexities, we propose a solution involving three modules grounded in morphological operations: the Multi-scale Morphological Closing Module, the Multi-scale Morphological Opening Module, and the Multi-scale Morphological Gradient Module. In contrast to conventional morphological operations, our approach involves learning structuring elements through a training process, enabling effective adaptation to the irregular shapes of ROIs. To cater to the diverse range of ROI sizes in clinical images, we introduce the concept of dilation rates within the structural elements of morphological operations. Our proposal extends to MorphUNet, a lightweight framework for medical image segmentation. This architecture integrates proposed modules with UNet, presenting a tight-coupled synergy between deep neural networks and multi-scale morphological operations. Efficacy is substantiated across diverse medical imaging datasets, spanning modalities, conditions, and ROI proportions. Extensive experimentation validated through widely recognized segmentation metrics underscores our model's superiority compared to fifteen state-of-the-art segmentation methods and baseline models.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Sub-pixel multi-scale fusion network for medical image segmentation
    Jing Li
    Qiaohong Chen
    Xian Fang
    Multimedia Tools and Applications, 2024, 83 (41) : 89355 - 89373
  • [42] HMDA: A Hybrid Model With Multi-Scale Deformable Attention for Medical Image Segmentation
    Wu, Mengmeng
    Liu, Tiantian
    Dai, Xin
    Ye, Chuyang
    Wu, Jinglong
    Funahashi, Shintaro
    Yan, Tianyi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 1243 - 1255
  • [43] Space Plant Image Segmentation via Multi-Scale Deep Feature Fusion
    Cao, Jingkang
    Duan, Jiangyong
    Meng, Juan
    Li, Ye
    2018 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSSE 2018), 2018, : 12 - 22
  • [44] Deep Attention and Multi-Scale Networks for Accurate Remote Sensing Image Segmentation
    Qi, Xingqun
    Li, Kaiqi
    Liu, Pengkun
    Zhou, Xiaoguang
    Sun, Muyi
    IEEE ACCESS, 2020, 8 (08): : 146627 - 146639
  • [45] Multi-scale morphological simplification for image segmentation
    Lu, GM
    Yang, Z
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 484 - 487
  • [46] Multi-scale Image Co-segmentation
    Es-Salhi, Rachida
    Daoudi, Imane
    Weber, Jonathan
    El Ouardi, Hamid
    Tallal, Saida
    Medromi, Hicham
    ADVANCES IN UBIQUITOUS NETWORKING, 2016, 366 : 381 - 390
  • [47] REPRESENTATION OF IMAGE CONTENT WITH MULTI-SCALE SEGMENTATION
    Zhang, Jing
    Zhao, Ya-Xin
    Li, Da
    Chen, Zhi-Hua
    Yuan, Yu-Bo
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 1552 - 1555
  • [48] A robust multi-scale deep learning approach for unconstrained hand detection aided by skin segmentation
    Kankana Roy
    Rajiv Ranjan Sahay
    The Visual Computer, 2022, 38 : 2801 - 2825
  • [49] A robust multi-scale deep learning approach for unconstrained hand detection aided by skin segmentation
    Roy, Kankana
    Sahay, Rajiv Ranjan
    VISUAL COMPUTER, 2022, 38 (08): : 2801 - 2825
  • [50] Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation
    Liu, Yuan
    Zhu, Ming
    Wang, Jing
    Guo, Xiangji
    Yang, Yifan
    Wang, Jiarong
    SENSORS, 2022, 22 (11)