Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries

被引:0
|
作者
Chen, Jun [1 ]
Zhou, Quan [1 ]
Xu, Xiaoyan [1 ]
Zhou, Chuncai [1 ]
Chen, Guorong [2 ]
Li, Yan [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Shanghai Univ, Coll Sci, Res Ctr Nano Sci & Technol, Dept Chem, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Solid polymer electrolytes; Poly(hexaazatrinaphthalene); PEO; Framework; Mobility; Coordination; LONG-CYCLE-LIFE; CONDUCTIVITY;
D O I
10.1002/cjoc.202400647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li+, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li+. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 x 10(-4) S<middle dot>cm(-1), which is greatly improved compared with 3.9 x 10-6 S<middle dot>cm(-1) of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.
引用
收藏
页码:3308 / 3316
页数:9
相关论文
共 50 条
  • [31] Flexible High Lithium-Ion Conducting PEO-Based Solid Polymer Electrolyte with Liquid Plasticizers for High Performance Solid-State Lithium Batteries
    Abe, Ayaka
    Mori, Daisuke
    Wang, Zhichao
    Taminato, Sou
    Takeda, Yasuo
    Yamamoto, Osamu
    Imanishi, Nobuyuki
    CHEMISTRYOPEN, 2024, 13 (09)
  • [32] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Bardenhagen, Ingo
    Soto, Marc
    Langer, Frederieke
    Koschek, Katharina
    Schwenzel, Julian
    IONICS, 2022, 28 (08) : 3615 - 3621
  • [33] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Ingo Bardenhagen
    Marc Soto
    Frederieke Langer
    Katharina Koschek
    Julian Schwenzel
    Ionics, 2022, 28 : 3615 - 3621
  • [34] Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries
    Polu, Anji Reddy
    Rhee, Hee-Woo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (10) : 7212 - 7219
  • [35] A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries
    Li, Jun
    Zhu, Kongjun
    Yao, Zhongran
    Qian, Guoming
    Zhang, Jie
    Yan, Kang
    Wang, Jing
    IONICS, 2020, 26 (03) : 1101 - 1108
  • [36] A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries
    Jun Li
    Kongjun Zhu
    Zhongran Yao
    Guoming Qian
    Jie Zhang
    Kang Yan
    Jing Wang
    Ionics, 2020, 26 : 1101 - 1108
  • [37] Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries
    Ma, Furui
    Zhang, Zengqi
    Yan, Wenchao
    Ma, Xiaodi
    Sun, Deye
    Jin, Yongcheng
    Chen, Xiaochun
    He, Kuang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05): : 4675 - 4683
  • [38] Li+ transport channel size governing Li+ migration in garnet-based all-solid-state lithium batteries
    Deng, Jiadong (dengjd88@126.com), 1600, Elsevier Ltd (767):
  • [39] Li+ transport channel size governing Li+ migration in garnet-based all-solid-state lithium batteries
    Zhang, Yanhua
    Hu, Dongwei
    Deng, Jiadong
    Chen, Fei
    Shen, Qiang
    Li, Aikui
    Zhang, Lianmeng
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 767 : 899 - 904
  • [40] Flexible and thin sulfide-based solid electrolyte sheet with Li plus -ion conductive polymer network for all-solid-state lithium-ion batteries
    Lee, Young-Jun
    Hong, Seung-Bo
    Lee, Han-Jo
    Sim, Hui-Tae
    Kim, Yunsung
    Kim, Soyeon
    Kim, Dong-Won
    CHEMICAL ENGINEERING JOURNAL, 2023, 477