Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries

被引:0
|
作者
Chen, Jun [1 ]
Zhou, Quan [1 ]
Xu, Xiaoyan [1 ]
Zhou, Chuncai [1 ]
Chen, Guorong [2 ]
Li, Yan [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Shanghai Univ, Coll Sci, Res Ctr Nano Sci & Technol, Dept Chem, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Solid polymer electrolytes; Poly(hexaazatrinaphthalene); PEO; Framework; Mobility; Coordination; LONG-CYCLE-LIFE; CONDUCTIVITY;
D O I
10.1002/cjoc.202400647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li+, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li+. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 x 10(-4) S<middle dot>cm(-1), which is greatly improved compared with 3.9 x 10-6 S<middle dot>cm(-1) of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.
引用
收藏
页码:3308 / 3316
页数:9
相关论文
共 50 条
  • [1] Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries
    Yi Zhang
    Wei Feng
    Yichao Zhen
    Peiyao Zhao
    Xiaohui Wang
    Longtu Li
    Ionics, 2022, 28 : 2751 - 2758
  • [2] Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries
    Zhang, Yi
    Feng, Wei
    Zhen, Yichao
    Zhao, Peiyao
    Wang, Xiaohui
    Li, Longtu
    IONICS, 2022, 28 (06) : 2751 - 2758
  • [3] Investigation on the mechanical integrity of a PEO-based polymer electrolyte in all-solid-state lithium batteries
    Yang, Qinhua
    Kong, Detao
    Fu, Liang
    He, Yaolong
    Hu, Hongjiu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (10) : 8125 - 8140
  • [4] Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte
    Lee, Jongkwan
    Heo, Kookjin
    Song, Young-Woong
    Hwang, Dahee
    Kim, Min-Young
    Jeong, Hyejeong
    Shin, Dong-Chan
    Lim, Jinsub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (02) : 199 - 207
  • [5] Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries
    Song, Xin
    Ma, Kang
    Wang, Han
    Wang, Jian
    Chen, Jiawei
    Zheng, Zongmin
    Zhang, Jianmin
    COMPOSITES COMMUNICATIONS, 2024, 50
  • [6] Metal-organic framework modified PEO-based solid electrolyte for high-performance all-solid-state lithium metal batteries
    Zou, Youlan
    Ao, Zhuoran
    Zhang, Zhehao
    Chen, Nantao
    Zou, Haiyan
    Lv, Yiyang
    Huang, Yuxing
    CHEMICAL ENGINEERING SCIENCE, 2023, 275
  • [7] A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries
    Li, Yi-Jing
    Fan, Chao-Ying
    Zhang, Jing-Ping
    Wu, Xing-Long
    DALTON TRANSACTIONS, 2018, 47 (42) : 14932 - 14937
  • [8] A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries
    Tao, Can
    Gao, Ming-Hao
    Yin, Bo-Hao
    Li, Bin
    Huang, Yi-Ping
    Xu, Gewen
    Bao, Jun-Jie
    ELECTROCHIMICA ACTA, 2017, 257 : 31 - 39
  • [9] Enhancing Li+ transport kinetics of PEO-based polymer electrolyte with mesoporous silica-derived fillers for lithium-ion batteries
    Shen, Xiu
    Li, Ruiyang
    Ma, Haoshen
    Peng, Longqing
    Huang, Boyang
    Zhang, Peng
    Zhao, Jinbao
    SOLID STATE IONICS, 2020, 354 (354)
  • [10] Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery
    Wang, Shuohan
    Li, Jian
    Li, Tengfei
    Huang, Weiguo
    Wang, Lihua
    Tao, Shengdong
    CHEMICAL ENGINEERING JOURNAL, 2023, 461