DISCRETE-TO-CONTINUUM LINEARIZATION IN ATOMISTIC DYNAMICS

被引:0
|
作者
Friedrich, Manuel [1 ,2 ]
Seitz, Manuel [3 ,4 ]
Stefanelli, Ulisse [3 ,5 ,6 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] Univ Vienna, Vienna Sch Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[5] Univ Vienna, Vienna Res Platform Accelerating Photoreact Discov, Wahringerstr 17, A-1090 Vienna, Austria
[6] Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Discrete-to-continuum and linearization limit; variational evolution; equation of motion; evolutive I. .-convergence; GAMMA-CONVERGENCE; GRADIENT FLOWS; SYSTEMS; LIMITS; ELASTICITY; DERIVATION; ENERGIES; PASSAGE; MODELS;
D O I
10.3934/dcds.2024115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In the stationary case, atomistic interaction energies can be proved to I.-converge to classical elasticity models in the simultaneous atomistic-tocontinuum and linearization limit [19, 41]. The aim of this note is that of extending the convergence analysis to the dynamic setting. Moving within the framework of [41], we prove that solutions of the equation of motion driven by atomistic deformation energies converge to the solutions of the momentum equation for the corresponding continuum energy of linearized elasticity. By recasting the evolution problems in their equivalent energy-dissipationinertia-principle form, we directly argue at the variational level of evolutionary I.-convergence [33, 37]. This in particular ensures the pointwise in time convergence of the energies.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条
  • [21] Discrete-to-Continuum Convergence of Charged Particles in 1D with Annihilation
    van Meurs, Patrick
    Peletier, Mark A.
    Pozar, Norbert
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 246 (01) : 241 - 297
  • [22] Discrete-to-Continuum Limit of Magnetic Forces: Dependence on the Distance Between Bodies
    Anja Schlömerkemper
    Bernd Schmidt
    Archive for Rational Mechanics and Analysis, 2009, 192 : 589 - 611
  • [23] Discrete-to-Continuum Convergence of Charged Particles in 1D with Annihilation
    Patrick van Meurs
    Mark A. Peletier
    Norbert Požár
    Archive for Rational Mechanics and Analysis, 2022, 246 : 241 - 297
  • [24] Finite temperature coupled atomistic/continuum discrete dislocation dynamics simulation of nanoindentation
    Shiari, B
    Miller, RE
    NANOMECHANICS OF MATERIALS AND STRUCTURES, 2006, : 225 - +
  • [25] Discrete-to-continuum models of pre-stressed cytoskeletal filament networks
    Kory, J.
    Hill, N. A.
    Luo, X. Y.
    Stewart, P. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2290):
  • [26] Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures
    Prashant K. Jha
    Timothy Breitzman
    Kaushik Dayal
    Archive for Rational Mechanics and Analysis, 2023, 247
  • [27] Discrete-to-continuum limits of interacting particle systems in one dimension with collisions
    van Meurs, Patrick
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (02)
  • [28] Discrete-to-Continuum Limit of Magnetic Forces: Dependence on the Distance Between Bodies
    Schloemerkemper, Anja
    Schmidt, Bernd
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (03) : 589 - 611
  • [29] Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices
    Espanol, Malena I.
    Golovaty, Dmitry
    Wilber, J. Patrick
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [30] Decay control via discrete-to-continuum coupling modulation in an optical waveguide system
    Dreisow, F.
    Szameit, A.
    Heinrich, M.
    Pertsch, T.
    Nolte, S.
    Tuennermann, A.
    Longhi, S.
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)