Optimizing solar power generation forecasting in smart grids: a hybrid convolutional neural network -autoencoder long short-term memory approach

被引:1
|
作者
Zafar, Ahsan [1 ]
Che, Yanbo [1 ]
Sehnan, Moeed [2 ]
Afzal, Usama [3 ]
Algarni, Abeer D. [4 ]
Elmannai, Hela [4 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
[4] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
关键词
renewable energy; smart grids; time series forecasting; AELSTM; hybrid HCAELSTM model; LSTM; OUTPUT;
D O I
10.1088/1402-4896/ad6cad
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Incorporating zero-carbon emission sources of energy into the electric grid is essential to meet the growing energy needs in public and industrial sectors. Smart grids, with their cutting-edge sensing and communication technologies, provide an effective approach to integrating renewable energy resources and managing power systems efficiently. Improving solar energy efficiency remains a challenge within smart grid infrastructures. Nonetheless, recent progress in artificial intelligence (AI) techniques presents promising opportunities to improve energy production control and management. In this study, initially, we employed two different Machine learning (ML) models: Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM), to forecast solar power plant parameters. The analysis revealed that the LSTM model performed better than RNN in terms of Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (MSE). Following a review of the LSTM model's graphical results, it was further enhanced by combining Autoencoder with LSTM, creating the Autoencoder LSTM (AELSTM) model. Next, a new hybrid model was introduced: Convolutional Neural Network-Autoencoder Long Short-Term Memory (HCAELSTM), designed to boost prediction accuracy. These models were trained on a one-year real-time solar power plant dataset for training and performance assessment. Ultimately, the hybrid HCAELSTM model surpassed the AELSTM model in terms of MAPE, MAE, and MSE. It excelled in MAPE scores for Daily Power Production, Peak Grid Power Production, and Solar Radiance, achieving low scores of 1.175, 2.116, and 1.592 respectively, demonstrating superior accuracy. The study underscores the importance of AI and ML, in particular, the hybrid model HCAELSTM, in enhancing the smart grid's ability to integrate renewable energy sources. The hybrid model excels at accurately forecasting key measurements, improving solar power generation efficiency within the smart grid system which also plays a key role in the broader shift toward the fourth energy revolution.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Application of temporal convolutional neural network combined with autoencoder in short-term bus load forecasting
    Tian, Peng
    Wu, Gaoxiang
    Chen, Hongxu
    Xie, Tao
    Tang, Xianlun
    Wang, Runzhu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 526 - 531
  • [42] Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network
    Frank, Corinna
    Russwurm, Marc
    Fluixa-Sanmartin, Javier
    Tuia, Devis
    FRONTIERS IN WATER, 2023, 5
  • [43] A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
    Qi, Yanlin
    Li, Qi
    Karimian, Hamed
    Liu, Di
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 : 1 - 10
  • [44] Very Short-Term Photovoltaic Power Generation Forecasting with Convolutional Neural Networks
    Kim, Dohyun
    Hwang, Sung-Wook
    Kim, Joongheon
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 1310 - 1312
  • [45] Production Forecasting with the Interwell Interference by Integrating Graph Convolutional and Long Short-Term Memory Neural Network
    Du, Enda
    Liu, Yuetian
    Cheng, Ziyan
    Xue, Liang
    Ma, Jing
    He, Xuan
    SPE RESERVOIR EVALUATION & ENGINEERING, 2022, 25 (02) : 197 - 213
  • [46] Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network
    Michael, Neethu Elizabeth
    Hasan, Shazia
    Al-Durra, Ahmed
    Mishra, Manohar
    APPLIED ENERGY, 2022, 324
  • [47] Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network
    Rui Yin
    Dengxuan Li
    Yifeng Wang
    Weidong Chen
    GlobalEnergyInterconnection, 2020, 3 (06) : 571 - 576
  • [48] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [49] Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Tian, Xuan
    Fang, Shuai
    Cheng, Yulin
    Chang, Ying
    Liu, Haofan
    ENERGY, 2021, 214
  • [50] A Hybrid Model for Power Consumption Forecasting Using VMD-Based the Long Short-Term Memory Neural Network
    Ruan, Yingjun
    Wang, Gang
    Meng, Hua
    Qian, Fanyue
    FRONTIERS IN ENERGY RESEARCH, 2022, 9