High-Performance Supercapacitors Using Compact Carbon Hydrogels Derived from Polybenzoxazine

被引:0
|
作者
Asrafali, Shakila Parveen [1 ]
Periyasamy, Thirukumaran [1 ]
Lee, Jaewoong [1 ]
机构
[1] Yeungnam Univ, Dept Fiber Syst Engn, 280 Daehak Ro, Gyeongbuk 38541, South Korea
关键词
polybenzoxazine; calcination; aerogel; porous structure; electrode materials; PULSED-LASER IRRADIATION; SURFACE MODIFICATION; MECHANICAL-PROPERTIES; OXIDE; CR2O3; MGO; NANOPARTICLES; SHEETS;
D O I
10.3390/gels10080509
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polybenzoxazine (PBz) aerogels hold immense potential, but their conventional production methods raise environmental and safety concerns. This research addresses this gap by proposing an eco-friendly approach for synthesizing high-performance carbon derived from polybenzoxazine. The key innovation lies in using eugenol, ethylene diamine, and formaldehyde to create a polybenzoxazine precursor. This eliminates hazardous solvents by employing the safer dimethyl sulfoxide. An acidic catalyst plays a crucial role, not only in influencing the microstructure but also in strengthening the material's backbone by promoting inter-chain connections. Notably, this method allows for ambient pressure drying, further enhancing its sustainability. The polybenzoxazine acts as a precursor to produce two different carbon materials. The carbon material produced from the calcination of PBz is denoted as PBZC, and the carbon material produced from the gelation and calcination of PBz is denoted as PBZGC. The structural characterization of these carbon materials was analyzed through different techniques, such as XRD, Raman, XPS, and BET analyses. BET analysis showed increased surface of 843 m2 g-1 for the carbon derived from the gelation method (PBZGC). The electrochemical studies of PBZC and PBZGC imply that a well-defined morphology, along with suitable porosity, paves the way for increased conductivity of the materials when used as electrodes for supercapacitors. This research paves the way for utilizing heteroatom-doped, polybenzoxazine aerogel-derived carbon as a sustainable and high-performing alternative to traditional carbon materials in energy storage devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Flour food waste derived activated carbon for high-performance supercapacitors
    Zhan, Changzhen
    Yu, Xiaoliang
    Liang, Qinghua
    Liu, Wei
    Wang, Yanbo
    Lv, Ruitao
    Huang, Zheng-Hong
    Kang, Feiyu
    RSC ADVANCES, 2016, 6 (92): : 89391 - 89396
  • [22] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Zhen-zhen Chang
    Bao-jun Yu
    Cheng-yang Wang
    Journal of Solid State Electrochemistry, 2016, 20 : 1405 - 1412
  • [23] Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors
    Yang, Nuannuan
    Ji, Lei
    Fu, Haichao
    Shen, Yanfeng
    Wang, Meijun
    Liu, Jinghai
    Chang, Liping
    Lv, Yongkang
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3961 - 3967
  • [24] Tailoring Biomass-Derived Carbon Nanoarchitectures for High-Performance Supercapacitors
    Wang, Huanlei
    Li, Zhi
    Mitlin, David
    CHEMELECTROCHEM, 2014, 1 (02): : 332 - 337
  • [25] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Sun, Yao
    Xue, Jianjun
    Dong, Shengyang
    Zhang, Yadi
    An, Yufeng
    Ding, Bing
    Zhang, Tengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (12) : 5166 - 5176
  • [26] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Yao Sun
    Jianjun Xue
    Shengyang Dong
    Yadi Zhang
    Yufeng An
    Bing Ding
    Tengfei Zhang
    Hui Dou
    Xiaogang Zhang
    Journal of Materials Science, 2020, 55 : 5166 - 5176
  • [27] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Chang, Zhen-zhen
    Yu, Bao-jun
    Wang, Cheng-yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1405 - 1412
  • [28] Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors
    Nuannuan Yang
    Lei Ji
    Haichao Fu
    Yanfeng Shen
    Meijun Wang
    Jinghai Liu
    Liping Chang
    Yongkang Lv
    Chinese Chemical Letters, 2022, 33 (08) : 3961 - 3967
  • [29] Nitrogen-Enriched Hierarchically Porous Carbons Prepared from Polybenzoxazine for High-Performance Supercapacitors
    Wan, Liu
    Wang, Jianlong
    Xie, Lijing
    Sun, Yahui
    Li, Kaixi
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (17) : 15583 - 15596
  • [30] Carbon nanomaterials for high-performance supercapacitors
    Chen, Tao
    Dai, Liming
    MATERIALS TODAY, 2013, 16 (7-8) : 272 - 280