Investigation on adaptability of physical property state equation model for hydrogen-blended natural gas

被引:2
|
作者
Wang, Jiakang [1 ]
Ouyang, Xin [2 ]
Lei, Cheng [2 ]
Peng, Shiyao [2 ]
Wang, Zhiheng [1 ]
Wang, Jinhua [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Natl Oil & Nat Gas Pipeline Network Grp Co Ltd, Sci & Technol Res Inst, Langfang 065000, Peoples R China
关键词
Hydrogen-blended natural gas; Pipeline transportation; Equation of state; Adaptability; HEAT-CAPACITY; THERMODYNAMIC PROPERTIES; 350; K; MIXTURES; PRESSURES; VISCOSITY; METHANE; ENTHALPY; RHO;
D O I
10.1016/j.ijhydene.2024.07.335
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During the transportation of hydrogen-blended natural gas (HBNG) through the natural gas pipeline network, the accuracy of the physical property model for real gas greatly influences the reliability of aerodynamic performance of compressor systems and the hydrothermal characteristics of pipeline networks. In this study, the adaptability of various equations of state (EOS) in predicting physical property parameters including compressibility factor, enthalpy difference, entropy difference, specific heat capacity, specific heat ratio and viscosity of natural gas (NG) and HBNG is evaluated based on the experimental data and NIST REFPROP firstly. The properties calculated using NIST REFPROP are compared with those from the EOSs, such as cubic EOSs (Redlich-Kwong EOS (RK), Soave-Redlich-Kwong EOS (SRK), Peng-Robinson EOS (PR)) and Soave-Benedict-Webb-Rubin (BWRS) EOS. After confirming the reliability of NIST REFPROP as the calculation benchmark, the accuracy of the four EOSs in calculating the physical properties of HBNG is assessed within the temperature range of 250 similar to 350 K, pressure range of 1 similar to 25 MPa, and hydrogen doping ratio of 0%-30%. Besides, the mixing rules of different equations of state (EOSs) are compared based on the NIST REFPROP calculation results. The results indicate that, except for specific heat capacity calculation, the mixing rule has little influence on the prediction accuracy of cubic EOS models, and the maximum calculation error between different mixing rules of the same EOS model does not exceed 0.5%. Under specific conditions, the traditional mixing rule exhibits better prediction accuracy and can be prioritized due to its simplicity. Furthermore, the pressure has a significant impact on the accuracy of EOS models, with the prediction accuracy decreasing as the pressure increased. The influence of temperature on the prediction accuracy is less significant than that of pressure. Generally, lower temperatures exhibit lower prediction accuracy, while higher temperatures show higher prediction accuracy. Among the cubic EOS models, the RK equation performs better than the SRK and PR EOS models. While the cubic EOSs show minimal differences in predicting specific heat ratio with an average relative error below 1%, the RK EOS shows significant advantages in predicting other physical parameters. The simple structure of RK EOS meets the calculation requirements for HBNG engineering. The comprehensive comparisons reveal that, the BWRS EOS has higher accuracy in predicting various physical properties parameters, with the maximum average relative error not exceeding 5% for each physical property parameter, and its stability is also better compared to the cubic EOSs. The further analysis shows that, the calculation of viscosity is influenced not only by the EOS but also by the viscosity model. When calculating viscosity using the LU-Model, the PR EOS provides the most accurate results. In contrast, when utilizing the LGE-Model or LBC-Model, the BWRS EOS demonstrates superior accuracy compared to other EOSs.
引用
收藏
页码:1256 / 1277
页数:22
相关论文
共 50 条
  • [21] Study on the Leakage and Diffusion Characteristics of Buried Hydrogen-Blended Natural Gas Pipelines
    Liu, Wu
    Li, Liangdi
    Zhao, Donghui
    Liao, Yong
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [22] Modeling and assessment of hydrogen-blended natural gas releases from buried pipeline
    Xia, Zhiheng
    Xu, Zhao-Dong
    Lu, Hongfang
    Peng, Haoyan
    Zang, Xulei
    Liu, Xinyu
    Wang, Xin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 230 - 245
  • [23] Numerical study of leakage characteristics of hydrogen-blended natural gas in buried pipelines
    Wang, Lin
    Chen, Juan
    Ma, Tingxia
    Ma, Rulong
    Bao, Yangyang
    Fan, Zhaoya
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1166 - 1179
  • [24] Study on the leakage and diffusion behavior of hydrogen-blended natural gas in utility tunnels
    Han, Hui
    Chang, Xiwen
    Duan, Pengfei
    Li, Yuxing
    Zhu, Jianlu
    Kong, Yingying
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2023, 85
  • [25] Dynamic response of spherical tanks subjected to the explosion of hydrogen-blended natural gas
    Mo, Li
    Wang, Ruichao
    Yang, Huai
    Yang, Yu
    Wu, Xia
    Jia, Wenlong
    Li, Changjun
    Chen, Chao
    FUEL, 2024, 377
  • [26] Safety Analysis of Hydrogen-Blended Natural Gas Leakage in Comprehensive Pipe Gallery
    Zhang C.
    Li J.
    Zhang Y.
    Li L.
    Duan P.
    Wei J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (02): : 22 - 30
  • [27] Effect of hydrogen ratio on leakage and explosion characteristics of hydrogen-blended natural gas in utility tunnels
    Yang, Kai
    Li, Wei
    Dai, Xiaole
    Guo, Yueyan
    Pang, Lei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 64 : 132 - 147
  • [28] Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in the Environment of Hydrogen-Blended Natural Gas
    Zhang J.-X.
    Wang C.-L.
    Liu C.-W.
    Hu Q.-H.
    Zhang R.
    Xu X.-S.
    Ju S.-X.
    Li Y.-X.
    Surface Technology, 2022, 51 (10): : 76 - 88
  • [29] Hazard analysis and control measures for hydrogen-blended natural gas leakage in utility tunnels
    Peng, Shanbi
    Luo, Jia
    Li, Wei
    Jiang, Jun
    Liu, Enbin
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 194 : 1434 - 1453
  • [30] Burner Design Considerations for Hydrogen-blended Gas Operation
    Fridlyand, Aleksandr
    Zhao, Yan
    Asher, William
    Glanville, Paul
    ASHRAE TRANSACTIONS 2023, VOL 129, PT 1, 2023, 129 : 83 - 91