The Fuzzy Jump-Diffusion Model to Pricing European Vulnerable Options

被引:0
|
作者
Xu, Weijun [2 ]
Peng, Xiaolong [3 ]
Xiao, Weilin [1 ]
机构
[1] Zhejiang Univ, Sch Management, Hangzhou 310058, Zhejiang, Peoples R China
[2] S China Univ Technol, Inst Govt Decis Making & Performance Evaluat, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy number; european vulnerable options; jump-diffusion process; secant method; BLACK-SCHOLES FORMULA; DEFAULT RISK; CREDIT RISK; ENVIRONMENTS; NUMBERS; SECURITIES; VOLATILITY; VALUATION; AMERICAN; IMPACT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to the fluctuation of financial markets from time to time, some parameters, such as the interest rate, volatility, cannot be precisely described. Under the assumption that the risk-free rate, the volatility, and the average jump intensity are fuzzy numbers, this paper presents the jump-diffusion approach to price vulnerable options in fuzzy environments. We also provide the crisp possibilistic mean jump-diffusion model to price European vulnerable call options and the secant method to obtain the belief degree. Finally, the performance of our model and the algorithm is illustrated with some numerical examples.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [11] Pricing stock options in mergers and acquisitions with jump-diffusion model
    Lu, Chaoxiao
    Yau, Stephen
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1008 - 1012
  • [12] Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging
    Chen, Kuo-Shing
    Huang, Yu-Chuan
    [J]. MATHEMATICS, 2021, 9 (20)
  • [13] PRICING VULNERABLE OPTIONS UNDER A JUMP-DIFFUSION MODEL WITH FAST MEAN-REVERTING STOCHASTIC VOLATILITY
    He, Wan-Hua
    Wu, Chufang
    Gu, Jia-Wen
    Ching, Wai-Ki
    Wong, Chi-Wing
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (03) : 2077 - 2094
  • [14] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    [J]. STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [15] The European Vulnerable Option Pricing Based on Jump-Diffusion Process in Fractional Market
    Wang, Chao
    He, Jianmin
    [J]. 2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 568 - 573
  • [16] Pricing Vulnerable Option under Jump-Diffusion Model with Incomplete Information
    Yang Jiahui
    Zhou Shengwu
    Zhou Haitao
    Guo Kaiqiang
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [17] Pricing vulnerable options with correlated jump-diffusion processes depending on various states of the economy
    Niu, Huawei
    Wang, Dingcheng
    [J]. QUANTITATIVE FINANCE, 2016, 16 (07) : 1129 - 1145
  • [18] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [19] A jump-diffusion approach to modelling vulnerable option pricing
    Xu, Weidong
    Xu, Weijun
    Li, Hongyi
    Xiao, Weilin
    [J]. FINANCE RESEARCH LETTERS, 2012, 9 (01): : 48 - 56
  • [20] Numerical approximation for options pricing of a stochastic volatility jump-diffusion model
    Aboulaich, R.
    Baghery, F.
    Jraifi, A.
    [J]. International Journal of Applied Mathematics and Statistics, 2013, 50 (20): : 69 - 82