The Fuzzy Jump-Diffusion Model to Pricing European Vulnerable Options

被引:0
|
作者
Xu, Weijun [2 ]
Peng, Xiaolong [3 ]
Xiao, Weilin [1 ]
机构
[1] Zhejiang Univ, Sch Management, Hangzhou 310058, Zhejiang, Peoples R China
[2] S China Univ Technol, Inst Govt Decis Making & Performance Evaluat, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Business Adm, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy number; european vulnerable options; jump-diffusion process; secant method; BLACK-SCHOLES FORMULA; DEFAULT RISK; CREDIT RISK; ENVIRONMENTS; NUMBERS; SECURITIES; VOLATILITY; VALUATION; AMERICAN; IMPACT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to the fluctuation of financial markets from time to time, some parameters, such as the interest rate, volatility, cannot be precisely described. Under the assumption that the risk-free rate, the volatility, and the average jump intensity are fuzzy numbers, this paper presents the jump-diffusion approach to price vulnerable options in fuzzy environments. We also provide the crisp possibilistic mean jump-diffusion model to price European vulnerable call options and the secant method to obtain the belief degree. Finally, the performance of our model and the algorithm is illustrated with some numerical examples.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [1] Analytical pricing of vulnerable options under a generalized jump-diffusion model
    Fard, Farzad Alavi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 60 : 19 - 28
  • [2] PRICING VULNERABLE AMERICAN PUT OPTIONS UNDER JUMP-DIFFUSION PROCESSES
    Wang, Guanying
    Wang, Xingchun
    Liu, Zhongyi
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2017, 31 (02) : 121 - 138
  • [3] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Jiří Hozman
    Tomáš Tichý
    Miloslav Vlasák
    [J]. Applications of Mathematics, 2019, 64 : 501 - 530
  • [4] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Hozman, Jiri
    Tichy, Tomas
    Vlasak, Miloslav
    [J]. APPLICATIONS OF MATHEMATICS, 2019, 64 (05) : 501 - 530
  • [5] Pricing American exchange options in a jump-diffusion model
    Lindset, Snorre
    [J]. JOURNAL OF FUTURES MARKETS, 2007, 27 (03) : 257 - 273
  • [6] PRICING VULNERABLE OPTIONS UNDER A MARKOV-MODULATED JUMP-DIFFUSION MODEL WITH FIRE SALES
    Yang, Qing-Qing
    Ching, Wai-Ki
    He, Wanhua
    Siu, Tak-Kuen
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (01) : 293 - 318
  • [7] Pricing vulnerable options with variable default boundary under jump-diffusion processes
    Zhou, Qing
    Wang, Qian
    Wu, Weixing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] PRICING VULNERABLE OPTIONS WITH CORRELATED CREDIT RISK UNDER JUMP-DIFFUSION PROCESSES
    Tian, Lihui
    Wang, Guanying
    Wang, Xingchun
    Wang, Yongjin
    [J]. JOURNAL OF FUTURES MARKETS, 2014, 34 (10) : 957 - 979
  • [9] Pricing vulnerable options with variable default boundary under jump-diffusion processes
    Qing Zhou
    Qian Wang
    Weixing Wu
    [J]. Advances in Difference Equations, 2018
  • [10] Consistent pricing of VIX options with the Hawkes jump-diffusion model
    Jing, Bo
    Li, Shenghong
    Ma, Yong
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2021, 56