共 50 条
Megalin-targeted acetylcysteine polymeric prodrug ameliorates ischemia-reperfusion-induced acute kidney injury
被引:0
|作者:
Huang, Hao-Le
[1
]
Cheng, Na
[1
]
Zhou, Can-Xin
[1
]
Liang, Jing
[2
]
机构:
[1] Ningbo Univ, Affiliated Peoples Hosp, Dept Nephrol, Ningbo 315040, Peoples R China
[2] Zhejiang Hosp, Dept Pharm, Hangzhou 310013, Peoples R China
来源:
关键词:
Acute kidney injury;
Acetylcysteine;
Low molecular weight chitosan;
Renal tubular epithelial cells;
N-ACETYLCYSTEINE;
D O I:
10.1016/j.heliyon.2024.e30947
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Acute kidney injury (AKI), a condition associated with reactive oxygen species (ROS), causes high mortality in clinics annually. Active targeted antioxidative therapy is emerging as a novel strategy for AKI treatment. In this study, we developed a polymeric prodrug that targets the highly expressed Megalin receptor on proximal tubule cells, enabling direct delivery of N-Acetylcysteine (NAC) for the treatment of ischemia reperfusion injury (IRI)-induced AKI. We conjugated NAC with low molecular weight chitosan (LMWC), a biocompatible and biodegradable polymer consisting of glucosamine and N-acetylglucosamine, to enhance its internalization by tubular epithelial cells. Moreover, we further conjugated triphenylphosphonium (TPP), a lipophilic cation with a delocalized positive charge, to low molecular weight chitosan-NAC in order to enhance the distribution of NAC in mitochondria. Our study confirmed that triphenylphosphonium-low molecular weight chitosan-NAC (TLN) exhibits remarkable therapeutic effects on IRI-AKI mice. This was evidenced by improvements in renal function, reduction in oxidative stress, mitigation of pathological progress, and decreased levels of kidney injury molecule-1. These findings suggested that the polymeric prodrug TLN holds promising potential for IRI-AKI treatment.
引用
下载
收藏
页数:13
相关论文