Performance Analysis and Optimization of Supercritical CO2 Recompression Brayton Cycle Coupled With Organic Flash Cycle With a Two-Phase Expander

被引:0
|
作者
Yu, Tingfang [1 ]
Zhang, Genli [1 ]
Zhou, Jiapeng [1 ]
Tang, Yicun [1 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal cycle; supercritical carbon dioxide; Brayton cycle; organic flash cycle; performance analysis; multi-objective optimization; energy efficiency; energy systems; thermal systems; WASTE HEAT-RECOVERY; THERMODYNAMIC ANALYSIS; POWER CYCLE; OFC; GAS;
D O I
10.1115/1.4066262
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a combined supercritical CO2 recompression Brayton cycle (SCRBC)/organic flash cycle with a two-phase expander (OFCT) system is proposed to improve the thermal efficiency of the SCRBC, which utilizes a two-phase expander to replace the high-pressure throttling valve of a basic organic flash cycle (OFC). In addition, the OFCT is coupled at the waste heat end of the SCRBC as the bottom cycle for the use of waste heat at low temperatures. A comprehensive comparison is carried out for different organic working fluids, including the R123, R245fa, R142B, R236ea, and R600, regarding the thermal performance, environmental effect, and safety levels. Furthermore, influences of various factors on the thermal performance of the combined SCRBC/OFCT cycle are also examined, including the top cycle pressure ratio, top cycle turbine inlet temperature, mass flowrate ratio, evaporation temperature, and the condenser's pinch point temperature difference. A multi-objective optimization approach is employed on the combined SCRBC/OFCT system, which considers both the thermal efficiency and the specific investment cost as the objective function, and the optimization procedure is implemented through the nondominated sorting genetic algorithm II (NSGA-II) algorithm. The Pareto solution set and the compromise solution are finally obtained. The results indicate that the optimized combined SCRBC/OFCT system can improve the thermal efficiency by 11.75% and 9.70% when compared with the SCRBC and SCRBC/OFC, respectively.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Analysis and Performance Optimization of Supercritical CO2 Recompression Brayton Cycle Coupled Organic Rankine Cycle Based on Solar Tower
    Yu, Tingfang
    Song, Yuxi
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [2] Second law analysis of supercritical CO2 recompression Brayton cycle
    Sarkar, Jahar
    ENERGY, 2009, 34 (09) : 1172 - 1178
  • [3] Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle
    Akbari, Ata D.
    Mahmoudi, Seyed M. S.
    ENERGY, 2014, 78 : 501 - 512
  • [4] Integration of Supercritical CO2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison
    Mahmoudi, Seyed Mohammad Seyed
    Sardroud, Ramin Ghiami
    Sadeghi, Mohsen
    Rosen, Marc A.
    SUSTAINABILITY, 2022, 14 (14)
  • [5] Dynamic Modeling and Transient Analysis of a Recompression Supercritical CO2 Brayton Cycle
    Zhou, Pan
    Zhang, Jinyi
    Le Moullec, Yann
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [6] Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery
    Tang, Junrong
    Li, Qibin
    Wang, Shukun
    Yu, Haoshui
    ENERGY, 2023, 278
  • [7] Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery
    Tang, Junrong
    Li, Qibin
    Wang, Shukun
    Yu, Haoshui
    ENERGY, 2023, 278
  • [8] Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors
    Park, Joo Hyun
    Park, Hyun Sun
    Kwon, Jin Gyu
    Kim, Tae Ho
    Kim, Moo Hwan
    ENERGY, 2018, 160 : 520 - 535
  • [9] CONTROL OF A SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE DEMONSTRATION LOOP
    Conboy, T.
    Pasch, J.
    Fleming, D.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [10] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):