Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors

被引:99
|
作者
Park, Joo Hyun [1 ]
Park, Hyun Sun [1 ]
Kwon, Jin Gyu [1 ]
Kim, Tae Ho [2 ]
Kim, Moo Hwan [1 ]
机构
[1] POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea
[2] POSTECH, Dept Mech Engn, Pohang 790784, South Korea
关键词
Supercritical carbon dioxide (S-CO2); Brayton cycle; Cycle optimization; Small modular reactor (SMR); Printed circuit heat exchanger (PCHE); Turbomachinery; COOLED FAST-REACTOR; CIRCUIT HEAT-EXCHANGER; S-SHAPED FINS; POWER CYCLE; GAS-TURBINE; SOLAR POWER; COGENERATION SYSTEM; CONVERSION SYSTEM; RANKINE-CYCLE; ENERGY;
D O I
10.1016/j.energy.2018.06.155
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents optimization of a supercritical carbon dioxide Brayton cycle for three types of 300-MWth small modular reactors (SMRs); a pressurized water reactor (PWR), a sodium-cooled fast reactor (SFR) and a high-temperature gas-cooled reactor (HTGR). The parameters of the pressure ratio and the flow split fraction were examined for sensitivity analysis and optimization of cycle. The optimized cycle efficiencies of PWR, SFR, and HTGR were 30.6%, 46.38%, and 50.04%, respectively. Key components, i.e. turbomachinery and heat exchangers for the SMRs were designed to develop the optimized cycles. The cycle thermal efficiency was improved by using investigating the effects of the channel shape (zigzag, s-shape, airfoil fin) of the printed circuit heat exchangers (PCHEs) on the pressure drop. The study indicated that using airfoil fin type PCHE may increase the cycle thermal efficiency by about 1.0% in comparison with zigzag type PCHE. The effect of turbomachinery efficiencies on the cycle thermal efficiency were investigated. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:520 / 535
页数:16
相关论文
共 50 条
  • [1] Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver
    Wu, Pan
    Gao, Chuntian
    Huang, Yanping
    Zhang, Dan
    Shan, Jianqiang
    [J]. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2020, 2020
  • [2] Second law analysis of supercritical CO2 recompression Brayton cycle
    Sarkar, Jahar
    [J]. ENERGY, 2009, 34 (09) : 1172 - 1178
  • [3] Investigation of the recompression pathway in the supercritical CO2 Brayton cycle: Cycle modification and thermodynamic study
    Li, Chengyu
    Wang, Yongzhen
    Wang, Youtang
    He, Fang
    [J]. APPLIED THERMAL ENGINEERING, 2024, 248
  • [4] Dynamic Modeling and Transient Analysis of a Recompression Supercritical CO2 Brayton Cycle
    Zhou, Pan
    Zhang, Jinyi
    Le Moullec, Yann
    [J]. INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [5] THERMODYNAMIC PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 BRAYTON CYCLE
    Yang, Xiaoping
    Cai, Zhuodi
    [J]. THERMAL SCIENCE, 2021, 25 (05): : 3933 - 3943
  • [6] Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle
    Ma, Yuegeng
    Liu, Ming
    Yan, Junjie
    Liu, Jiping
    [J]. ENERGY, 2017, 140 : 746 - 756
  • [7] Thermodynamic and exergoeconomic optimization of a new combined cooling and power system based on supercritical CO2 recompression Brayton cycle
    Yousef, Mohamed S.
    Santana, Domingo
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 295
  • [8] CONTROL OF A SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE DEMONSTRATION LOOP
    Conboy, T.
    Pasch, J.
    Fleming, D.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [9] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):
  • [10] Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle
    Akbari, Ata D.
    Mahmoudi, Seyed M. S.
    [J]. ENERGY, 2014, 78 : 501 - 512