Classifying muscle performance of junior endurance and power athletes using machine learning

被引:0
|
作者
Sulaiman, Maisarah [1 ]
Azaman, Aizreena [1 ]
Salleh, Noor Aimie [1 ]
As'ari, Muhammad Amir [1 ]
Zulkapri, Izwyn [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Dept Biomed Engn & Hlth Sci, Johor Baharu, Malaysia
关键词
electromyography; EMG; muscle; athlete; endurance; power; distance runner; sprinter; classification; machine learning; support vector machine; SVM; FATIGUE; HEALTH;
D O I
10.1504/IJBET.2024.140560
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper aimed to characterise the muscle performance of endurance and power athletes using machine learning approach. In this regard, electromyography (EMG) features were extracted from the vastus lateralis muscle and used to feed the support vector machine (SVM) classifier. The performance of various EMG features was evaluated based on their classification accuracy, sensitivity, specificity, and F-score. The accuracy was the highest for the feature set selected using the feature selection approach compared to the single feature. Specifically, the performance of sequential backward selection (SBS) was superior to the sequential forward selection (SFS) approach. Meanwhile, based on the SVM classification result, the radial basis function (RBF) kernel performed better than the other investigated kernel types, such as linear, polynomial, and sigmoid kernel. This muscle characterisation of endurance and power athletes may be useful as a muscle-monitoring tool for future talent identification and talent development, particularly in young athletes.
引用
收藏
页码:337 / 353
页数:18
相关论文
共 50 条
  • [21] CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE LEARNING
    Anghel, Ana Magdalena
    Zaharia, Andrei
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2024, 86 (03): : 113 - 120
  • [22] Classifying and quantifying changes in papilloedema using machine learning
    Branco, Joseph
    Wang, Jui-Kai
    Elze, Tobias
    Garvin, Mona K.
    Pasquale, Louis R.
    Kardon, Randy
    Woods, Brian
    Szanto, David
    Kupersmith, Mark J.
    BMJ NEUROLOGY OPEN, 2024, 6 (01)
  • [23] Predicting and Classifying Breast Cancer Using Machine Learning
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 497 - 514
  • [24] CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE LEARNING
    Anghel, Ana Magdalena
    Zaharia, Andrei
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2024, 86 (03): : 113 - 120
  • [25] Classifying Diabetic Retinopathy using CNN and Machine Learning
    Lahmar, Chaymaa
    Idri, Ali
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOIMAGING), VOL 2, 2021, : 52 - 62
  • [26] Classifying earthquake damage to buildings using machine learning
    Mangalathu, Sujith
    Sun, Han
    Nweke, Chukwuebuka C.
    Yi, Zhengxiang
    Burton, Henry V.
    EARTHQUAKE SPECTRA, 2020, 36 (01) : 183 - 208
  • [27] Classifying Interplanetary Discontinuities Using Supervised Machine Learning
    Dumitru, Daniel
    Munteanu, Costel
    EARTH AND SPACE SCIENCE, 2023, 10 (07)
  • [28] Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning
    Sahli-Costabal, Francisco
    Seo, Kinya
    Ashley, Euan
    Kuhl, Ellen
    BIOPHYSICAL JOURNAL, 2020, 118 (05) : 1165 - 1176
  • [29] Classifying kinase conformations using a machine learning approach
    Daniel Ian McSkimming
    Khaled Rasheed
    Natarajan Kannan
    BMC Bioinformatics, 18
  • [30] Classifying Osteosarcoma Patients Using Machine Learning Approaches
    Li, Zhi
    Soroushmehr, S. M. Reza
    Hua, Yingqi
    Mao, Min
    Qiu, Yunping
    Najarian, Kayvan
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 82 - 85