Feasibility of Providing High-Precision GNSS Correction Data Through Non-Terrestrial Networks

被引:1
|
作者
Boquet, Guillem [1 ]
Vilajosana, Xavi [1 ]
Martinez, Borja [1 ]
机构
[1] Univ Oberta Catalunya, Wireless Networks Grp, Barcelona 08018, Spain
关键词
Global navigation satellite system; Satellites; Convergence; Receivers; Accuracy; Extraterrestrial measurements; Satellite broadcasting; Global Navigation Satellite Systems (GNSS); low Earth orbit (LEO); non-terrestrial networks (NTNs); precise point positioning (PPP); real-time kinematic (RTK);
D O I
10.1109/TIM.2024.3453319
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time kinematic (RTK) and precise point positioning (PPP)-RTK techniques are essential for safety-critical applications like structural health monitoring (SHM) and open-pit mining operations, among others. These applications often operate in remote areas lacking the necessary traditional communication infrastructure for high-precision Global Navigation Satellite Systems (GNSS). This article explores non-terrestrial networks (NTNs) as a viable solution, specifically using low Earth orbit (LEO) satellite constellations to deliver RTK and PPP-RTK correction data through NTN. We evaluate the convergence time of these techniques and the required link capacity through real-world experiments, relating these findings to actual LEO satellite communication access duration and intervals. Our results demonstrate that these communication periods provide sufficient time for achieving convergence in high-precision GNSS navigation solutions.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Performance Evaluation of Data Transmission for Non-Terrestrial Networks
    You, Dukhyun
    Kim, Jihyung
    Yun, Mi Young
    Lee, Moon-Sik
    Kang, Joonhyuk
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1073 - 1075
  • [2] Feasibility Analysis of Isolation-Based Spectrum Sharing Between Terrestrial and Non-Terrestrial Networks
    Chintalapati, Rahul
    Tripathi, Nishith. D.
    Kumar, Manoj
    Reed, Jeffrey H.
    2024 IEEE TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS, WMCS 2024, 2024,
  • [3] Low-Complexity Streaming Forward Erasure Correction for Non-Terrestrial Networks
    Li, Ye
    Chen, Xiaomin
    Hu, Yingdong
    Gao, Ruifeng
    Wang, Jue
    Wu, Sheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 6870 - 6883
  • [4] Ubiquitous 6G Service Through Non-Terrestrial Networks
    Wigard, Jeroen
    Juan, Enric
    Stanczak, Jedrzej
    Lauridsen, Mads
    Marcone, Alessio
    Hoppe, Sandra
    Ahmadzadeh, Arman
    Masri, Ahmad
    Tran, Dinh-Hieu
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (06) : 12 - 18
  • [5] Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
    Pan, Yuanxin
    Klopotek, Grzegorz
    Crocetti, Laura
    Weinacker, Rudi
    Sturn, Tobias
    See, Linda
    Dick, Galina
    Moeller, Gregor
    Rothacher, Markus
    McCallum, Ian
    Navarro, Vicente
    Soja, Benedikt
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (14) : 4303 - 4316
  • [6] High-precision vertical deformation of the Chinese mainland constrained by levelling and GNSS data
    Wu, Yanqiang
    Su, Guangli
    Nie, Jianliang
    Chen, Changyun
    Chen, Zhaohui
    Yu, Huazhi
    Yin, Haiquan
    Chang, Liu
    Tang, Zheng
    Pang, Yajin
    Liang, Hongbao
    Bo, Wanju
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 239 (02) : 971 - 981
  • [7] Analysis of GAMIT/GLOBK in high-precision GNSS data processing for crustal deformation
    Yu Li
    Earthquake Research Advances, 2021, 1 (03) : 29 - 37
  • [8] Augmenting Data Quality through High-Precision Gender Categorization
    Mueller, Daniel
    Jain, Pratiksha
    Te, Yieh-Funk
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2019, 11 (02):
  • [9] GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning
    Yuan Y.
    Hou P.
    Zhang B.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (07): : 1225 - 1238
  • [10] Toward Intelligent Non-Terrestrial Networks Through Symbiotic Radio: A Collaborative Deep Reinforcement Learning Scheme
    Cao, Yang
    Lien, Shao-Yu
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE NETWORK, 2025, 39 (01): : 211 - 219