Coanalytic models for Hardy-type operators

被引:0
|
作者
Fu, Xiangdi [1 ]
Guo, Kunyu [1 ]
Yan, Fugang [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hardy operator; Hardy inequality; coanalytic model; Bergman space; THEOREM;
D O I
10.1007/s11425-023-2192-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish coanalytic models for a broad class of Hardy-type operators on L2[0, 1]. In particular, we show that the logarithmic Hardy operator is unitarily equivalent to the difference between the identity operator and the backward shift on a Bergman-type space. This result leads to several applications related to zero sets and invariant subspaces in weighted Bergman spaces. Additionally, we study logarithmic Hardy operators on Lp[0, 1] and obtain results concerning their boundedness, operator norms, and spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [32] Hardy-type inequalities
    Radha, R
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [33] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365
  • [34] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    [J]. MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33
  • [35] Hardy-Type Operators in Lorentz-Type Spaces Defined on Measure Spaces
    Qinxiu Sun
    Xiao Yu
    Hongliang Li
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1105 - 1132
  • [36] HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1105 - 1132
  • [37] The supremum-involving Hardy-type operators on Lorentz-type spaces
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    [J]. PORTUGALIAE MATHEMATICA, 2020, 77 (01) : 1 - 29
  • [38] Boundedness and compactness of Hardy-type integral operators on Lorentz-type spaces
    Li, Hongliang
    Sun, Qinxiu
    Yu, Xiao
    [J]. FORUM MATHEMATICUM, 2018, 30 (04) : 997 - 1011
  • [39] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    [J]. ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78
  • [40] Some Hardy-type inequalities for the generalized Baouendi-Grushin operators
    Niu, PC
    Chen, YX
    Han, YZ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 515 - 527