Coanalytic models for Hardy-type operators

被引:0
|
作者
Fu, Xiangdi [1 ]
Guo, Kunyu [1 ]
Yan, Fugang [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hardy operator; Hardy inequality; coanalytic model; Bergman space; THEOREM;
D O I
10.1007/s11425-023-2192-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish coanalytic models for a broad class of Hardy-type operators on L2[0, 1]. In particular, we show that the logarithmic Hardy operator is unitarily equivalent to the difference between the identity operator and the backward shift on a Bergman-type space. This result leads to several applications related to zero sets and invariant subspaces in weighted Bergman spaces. Additionally, we study logarithmic Hardy operators on Lp[0, 1] and obtain results concerning their boundedness, operator norms, and spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Coanalytic models for Hardy-type operators
    Xiangdi Fu
    Kunyu Guo
    Fugang Yan
    [J]. Science China(Mathematics), 2024, 67 (12) : 2771 - 2788
  • [2] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187
  • [3] On Weighted Iterated Hardy-Type Operators
    V. D. Stepanov
    G. E. Shambilova
    [J]. Analysis Mathematica, 2018, 44 : 273 - 283
  • [4] Interpolation of Operators in Hardy-Type Spaces
    V. G. Krotov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 173 - 187
  • [5] Hardy-type estimates for Dirac operators
    Dolbeault, Jean
    Esteban, Maria J.
    Duoandikoetxea, Javier
    Vega, Luis
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (06): : 885 - 900
  • [6] On Weighted Iterated Hardy-Type Operators
    Stepanov, V. D.
    Shambilova, G. E.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 273 - 283
  • [7] Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")
    Lang, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 140 (02) : 141 - 146
  • [8] ON ITERATED AND BILINEAR INTEGRAL HARDY-TYPE OPERATORS
    Stepanov, Vladimir D.
    Shambilova, Guldarya E.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1505 - 1533
  • [9] ADDITIVE ESTIMATES FOR DISCRETE HARDY-TYPE OPERATORS
    Kalybay, A.
    Shalginbayeva, S.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2018, 9 (02): : 44 - 53
  • [10] The approximation numbers of hardy-type operators on trees
    Evans, WD
    Harris, DJ
    Lang, J
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 : 390 - 418