A Novel Facial Expression Recognition (FER) Model Using Multi-scale Attention Network

被引:0
|
作者
Ghadai, Chakrapani [1 ]
Patra, Dipti [1 ]
Okade, Manish [1 ]
机构
[1] Natl Inst Technol, Rourkela, India
关键词
Facial expression recognition (FER); Deep learning; Muti-scale; Attention; receptive field;
D O I
10.1007/978-3-031-58174-8_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial Expression Recognition (FER) faces significant challenges, primarily due to significant variations within classes and subtle visual differences between classes, and limited dataset sizes. Real-world factors such as pose, illumination, and partial occlusion further hinder FER performance. To tackle these challenges, multi-scale and attention-based networks have been widely employed. However, previous approaches have primarily focused on increasing depth while neglecting width, resulting in an inadequate representation of granular facial expression features. This study introduces a novel FER model. A multi-scale attention network (MSA-Net) is designed as a more extensive and deeper network that captures features from various receptive fields through a parallel network structure. Each parallel branch in the proposed network utilizes channel complementary multi-scale blocks, e.g., left multi-scale (MS-L) and right multi-scale (MS-R), to broaden the effective receptive field and capture features having diversity. Additionally, attention networks are employed to emphasize important regions and boost the discriminative capability of the multi-scale features. The performance evaluation of the proposed method was carried out on two popular real-world FER databases: AffectNet and RAF-DB. Our MSA-Net has reduced the impact of the pose, partial occlusions and the network's susceptibility to subtle expression-related variations, thereby outperforming other methods in FER.
引用
收藏
页码:336 / 346
页数:11
相关论文
共 50 条
  • [21] FGW-FER: Lightweight Facial Expression Recognition with Attention
    Dinh, Huy-Hoang
    Do, Hong-Quan
    Doan, Trung-Tung
    Le, Cuong
    Bach, Ngo Xuan
    Phuong, Tu Minh
    Vu, Viet-Vu
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (09): : 2505 - 2528
  • [22] Multi-Scale Convolution Attention Neural Network for Gesture Recognition
    Ji, Penghui
    Cao, Chongli
    Zhang, Hang
    Li, Qi
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 421 - 425
  • [23] Multi-scale convolutional attention network for radar behavior recognition
    Xiong J.
    Pan J.
    Bi D.
    Du M.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (06): : 62 - 74
  • [24] Using attention LSGB network for facial expression recognition
    Su, Chan
    Wei, Jianguo
    Lin, Deyu
    Kong, Linghe
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 543 - 553
  • [25] Using attention LSGB network for facial expression recognition
    Chan Su
    Jianguo Wei
    Deyu Lin
    Linghe Kong
    Pattern Analysis and Applications, 2023, 26 : 543 - 553
  • [26] Feature fusion of multi-granularity and multi-scale for facial expression recognition
    Xia, Haiying
    Lu, Lidan
    Song, Shuxiang
    VISUAL COMPUTER, 2024, 40 (03): : 2035 - 2047
  • [27] Feature fusion of multi-granularity and multi-scale for facial expression recognition
    Haiying Xia
    Lidan Lu
    Shuxiang Song
    The Visual Computer, 2024, 40 : 2035 - 2047
  • [28] Facial Expression Recognition Using Multi-Branch Attention Convolutional Neural Network
    He, Yinggang
    IEEE ACCESS, 2023, 11 : 1244 - 1253
  • [29] Implementation of Facial Expression Recognition (FER) using Convolutional Neural Network (CNN)
    Abu Mangshor, Nur Nabilah
    Ishak, Norshahidatul Hasana
    Zainurin, Muhammad Haicial
    Rashid, Nor Aimuni Md
    Johari, Nur Farahin Mohd
    Sabri, Nurbaity
    2024 IEEE 15TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM, ICSGRC 2024, 2024, : 92 - 96
  • [30] A Method of Multi-Scale Forward Attention Model for Speech Recognition
    Tang H.-T.
    Xue J.-B.
    Han J.-Q.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1255 - 1260