Annealing process and temperature effects on silicon-vacancy and germanium-vacancy centers in CVD grown polycrystalline diamond

被引:0
|
作者
Sedov, Vadim [1 ]
Martyanov, Artem [1 ]
Tiazhelov, Ivan [1 ]
Boldyrev, Kirill [2 ]
Nosukhin, Sergei [3 ]
Kuznetsov, Mikhail [3 ]
Sektarov, Eduard [2 ]
Krivobok, Vladimir [4 ]
Nikolaev, Sergey [4 ]
Savin, Sergey [5 ]
Mandal, Soumen [6 ]
Saraykin, Vladimir [7 ]
Voronov, Valery [1 ]
Ralchenko, Victor [1 ]
机构
[1] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Spect, Troitsk 108840, Moscow, Russia
[3] Technol Inst Superhard & Novel Carbon Mat, Troitsk 108840, Moscow, Russia
[4] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[5] Russian Technol Univ, MIREA, Moscow 119454, Russia
[6] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, England
[7] Russian Acad Sci, Inst Ultra High Frequency Semicond Elect, Moscow 117105, Russia
基金
俄罗斯科学基金会;
关键词
Diamond; Chemical vapor deposition; Color centers; Germanium-vacancy; Annealing; COLOR-CENTERS; BRIGHT PHOTOLUMINESCENCE; RADIATION-DAMAGE; FILMS; LUMINESCENCE;
D O I
10.1016/j.diamond.2024.111169
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The annealing treatment plays a crucial role in tailoring the properties of synthetic diamond materials, especially those doped with various elements in order to form specific color centers like nitrogen-vacancy (NV), siliconvacancy (Si-V), germanium-vacancy (Ge-V), etc. This study delves into the annealing of 175 mu m-thick Gedoped polycrystalline diamond (PCD) films grown by microwave plasma-assisted chemical vapor deposition (MPCVD). Large-area PCD plate was cut into smaller equivalent 5 x 5 mm2 pieces, which were separately subjected to annealing in microwave plasma in H2 atmosphere, to annealing in vacuum or to annealing under high-pressure high-temperature conditions (HPHT, 5.9 GPa, 2000 degrees C). The structure, phase composition and photoluminescence (PL) of samples before and after various annealing processes were investigated. All applied types of annealing enhance both the Si-V and Ge-V lines in PL at room temperature. Increasing annealing temperature leads to gradual decrease of full widths at half-maxima (FWHM) of diamond Raman peak (1332.5 cm-1), as well as Si-V (738 nm) and Ge-V (602 nm) PL peaks. In addition, the limitations for each type of annealing are established. The obtained results are crucial for the design of CVD-grown Ge-doped and Si-doped PCD materials that can be used for applications in photonics such as single photon sources, biomarkers, as well as for the fabrication of optical diamond thermometers.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Revealing the Orientation Dependence of Coherent Coupling in Silicon-Vacancy Centers in Diamond
    Day, Matthew W.
    Bates, Kelsey M.
    Smallwood, Christopher L.
    Ulbricht, Ronald
    Autry, Travis M.
    Owen, Rachel C.
    Diederich, Geoffrey
    Schroeder, Tim
    Bielejec, Edward
    Siemens, Mark E.
    Cundiff, Steven T.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [32] Spin Properties of Germanium-Vacancy Centers in Bulk and Near-Surface Regions of Diamond
    Pushkarchuk, V. A.
    Kuten, S. A.
    Nizovtsev, A. P.
    Kilin, S. Ya
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [33] All-optical nanoscale thermometry with silicon-vacancy centers in diamond
    Nguyen, Christian T.
    Evans, Ruffin E.
    Sipahigil, Alp
    Bhaskar, Mihir K.
    Sukachev, Denis D.
    Agafonov, Viatcheslav N.
    Davydov, Valery A.
    Kulikova, Liudmila F.
    Jelezko, Fedor
    Lukin, Mikhail D.
    APPLIED PHYSICS LETTERS, 2018, 112 (20)
  • [34] Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond
    Higbie, J. M.
    Perreault, J. D.
    Acosta, V. M.
    Belthangady, C.
    Lebel, P.
    Kim, M. H.
    Nguyen, K.
    Demas, V.
    Bajaj, V.
    Santori, C.
    PHYSICAL REVIEW APPLIED, 2017, 7 (05):
  • [35] Synthesis and doping of microcolumn diamond photoemitters with silicon-vacancy color centers
    D. N. Sovyk
    V. A. Shershulin
    V. G. Ralchenko
    A. A. Khomich
    M. S. Komlenok
    V. V. Vorobyov
    I. I. Vlasov
    A. V. Akimov
    V. G. Pereverzev
    V. I. Konov
    Bulletin of the Lebedev Physics Institute, 2015, 42 : 63 - 66
  • [36] Raman quantum memory based on an ensemble of silicon-vacancy centers in diamond
    Kalachev, A.
    Berezhnoi, A.
    Hemmer, P.
    Kocharovskaya, O.
    LASER PHYSICS, 2019, 29 (10)
  • [37] Silicon-vacancy color centers in diamond microcrystals from ethanol and tetramethoxysilane
    Di Liscia, E. J.
    Reinoso, M.
    Alvarez, F.
    Huck, H.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (07):
  • [38] Photoluminescence of Germanium-Vacancy Centers in Nanocrystalline Diamond Films: Implications for Quantum Sensing Applications
    Joy, Rani Mary
    Pobedinskas, Paulius
    Bourgeois, Emilie
    Chakraborty, Tanmoy
    Goerlitz, Johannes
    Herrmann, Dennis
    Noel, Celine
    Heupel, Julia
    Jannis, Daen
    Gauquelin, Nicolas
    D'Haen, Jan
    Verbeeck, Johan
    Popov, Cyril
    Houssiau, Laurent
    Becher, Christoph
    Nesladek, Milos
    Haenen, Ken
    ACS APPLIED NANO MATERIALS, 2024, 7 (04) : 3873 - 3884
  • [39] Photoluminescence of Germanium-Vacancy Color Centers in Diamond Particles Obtained by Chemical Vapor Deposition
    Grudinkin, S. A.
    Feoktistov, N. A.
    Bogdanov, K. V.
    Baranov, A. V.
    Golubev, V. G.
    PHYSICS OF THE SOLID STATE, 2020, 62 (05) : 919 - 925
  • [40] Photoluminescence of Germanium-Vacancy Color Centers in Diamond Particles Obtained by Chemical Vapor Deposition
    S. A. Grudinkin
    N. A. Feoktistov
    K. V. Bogdanov
    A. V. Baranov
    V. G. Golubev
    Physics of the Solid State, 2020, 62 : 919 - 925