Deep Reinforcement Learning Based Resource Allocation Method in Future Wireless Networks with Blockchain Assisted MEC Network

被引:0
|
作者
Consul, Prakhar [1 ]
Budhiraja, Ishan [1 ]
Garg, Deepak [2 ]
Sharma, Sachin [3 ]
Muthanna, Ammar [4 ]
机构
[1] Bennett Univ, Sch Comp Sci Engn & Technol, Noida, Uttar Pradesh, India
[2] SR Univ, Sch Comp Sci & Artificial Intelligence, Warangal, Telangana, India
[3] State Bank India, Chandigarh, India
[4] RUDN Univ, Peoples Friendship Univ Russia, Moscow 117198, Russia
关键词
Mobile Edge Computing; Blockchain; Resource Allocation; Deep Reinforcement Learning;
D O I
10.1109/WoWMoM60985.2024.00052
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a blockchain-assisted mobile edge computing architecture for adaptive resource distribution in wireless communication systems, where the blockchain acts as an overhead system that provide command and control functionalities. In this context, achieving consensus across nodes while also ensuring the functionality of both MEC and blockchain systems is a big difficulty. Furthermore, resource distribution, frame size, and the number of sequential blocks generated by each contributor are important to Blockchain aided MEC functionality. As a result, a strategy for dynamic resource distribution and block creation is presented. To strengthen the efficiency of the overlapped blockchain system and enhance the quality of services (QoS) of the clients in the technologies to facilitate MEC system, spectrum allocation, frame size, and number of developing blocks for each distributor are framed as a joint optimization method that takes into account time-varying communication channels and MEC server saturation is defined. We use deep reinforcement learning (RAMBAN) to address this issue because standard approaches are ineffective. The simulation findings demonstrate that the efficacy of the suggested strategy when compared to different baseline approaches.
引用
收藏
页码:289 / 294
页数:6
相关论文
共 50 条
  • [21] Resource Pricing and Allocation in MEC Enabled Blockchain Systems: An A3C Deep Reinforcement Learning Approach
    Du, Jianbo
    Cheng, Wenjie
    Lu, Guangyue
    Cao, Haotong
    Chu, Xiaoli
    Zhang, Zhicai
    Wang, Junxuan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (01): : 33 - 44
  • [22] Resource Allocation for IRS-Assisted Networks: A Deep Reinforcement Learning Approach
    Ahmad S.
    Khan S.
    Khan K.S.
    Naeem F.
    Tariq M.
    IEEE Communications Standards Magazine, 2023, 7 (03): : 48 - 55
  • [23] A Deep Learning-Based Approach to Resource Allocation in UAV-aided Wireless Powered MEC Networks
    Feng, Wanmei
    Tang, Jie
    Zhao, Nan
    Zhang, Xiuyin
    Wang, Xianbin
    Wong, Kai-Kit
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [24] Intelligent Resource Allocation Method for Wireless Communication Networks Based on Deep Learning Techniques
    Hui, Hancheng
    JOURNAL OF SENSORS, 2021, 2021
  • [25] A Hybrid Task Offloading and Resource Allocation Approach for Digital Twin-Empowered UAV-Assisted MEC Network Using Federated Reinforcement Learning for Future Wireless Network
    Consul, Prakhar
    Budhiraja, Ishan
    Garg, Deepak
    Kumar, Neeraj
    Singh, Ramendra
    Almogren, Ahmad S.
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3120 - 3130
  • [26] Fair Resource Allocation Based on Deep Reinforcement Learning in Fog Networks
    Xu, Huihui
    Zu, Yijun
    Shen, Fei
    Yan, Feng
    Qin, Fei
    Shen, Lianfeng
    AD HOC NETWORKS, ADHOCNETS 2019, 2019, 306 : 135 - 148
  • [27] Deep reinforcement learning based resource allocation algorithm in cellular networks
    Liao X.
    Yan S.
    Shi J.
    Tan Z.
    Zhao Z.
    Li Z.
    Tongxin Xuebao/Journal on Communications, 2019, 40 (02): : 11 - 18
  • [28] Federated Deep Reinforcement Learning for Online Task Offloading and Resource Allocation in WPC-MEC Networks
    Zang, Lianqi
    Zhang, Xin
    Guo, Boren
    IEEE ACCESS, 2022, 10 : 9856 - 9867
  • [29] Intelligent Deep Reinforcement Learning based Resource Allocation in Fog network
    Divya, V
    Sri, Leena R.
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 18 - 22
  • [30] Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep Reinforcement Learning
    Wang, Jian
    Wang, Yancong
    Ke, Hongchang
    MOBILE INFORMATION SYSTEMS, 2022, 2022