High absorptivity nanotextured powders for additive manufacturing

被引:1
|
作者
Tertuliano, Ottman A. [1 ,2 ]
Depond, Philip J. [2 ,3 ]
Lee, Andrew C. [4 ]
Hong, Jiho [4 ]
Doan, David [2 ]
Capaldi, Luc [1 ]
Brongersma, Mark [4 ]
Gu, X. Wendy [2 ]
Matthews, Manyalibo J. [3 ]
Cai, Wei [2 ]
Lew, Adrian J. [2 ]
机构
[1] Univ Penn, Mech Engn & Appl Mech, 220 S 33rd St, Philadelphia, PA 19104 USA
[2] Stanford Univ, Mech Engn, 452 Escondido Mall, Stanford, CA 94305 USA
[3] Lawrence Livermore Natl Lab, Mat Sci Div, 7000 East Ave, Livermore, CA 94550 USA
[4] Stanford Univ, Mat Sci & Engn, 496 Lomita Mall, Suite 102, Stanford, CA 94305 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 36期
基金
美国国家科学基金会;
关键词
SELECTIVE LASER; TUNGSTEN; STEEL; DENUDATION; REFLECTION; MECHANISMS; PARAMETER; DESIGN; CU;
D O I
10.1126/sciadv.adp0003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread application of metal additive manufacturing (AM) is limited by the ability to control the complex interactions between the energy source and the feedstock material. Here, we develop a generalizable process to introduce nanoscale grooves to the surface of metal powders which increases the powder absorptivity by up to 70% during laser powder bed fusion. Absorptivity enhancements in copper, copper-silver, and tungsten enable energy-efficient manufacturing, with printing of pure copper at relative densities up to 92% using laser energy densities as low as 83 joules per cubic millimeter. Simulations show that the enhanced powder absorptivity results from plasmon-enabled light concentration in nanoscale grooves combined with multiple scattering events. The approach taken here demonstrates a general method to enhance the absorptivity and printability of reflective and refractory metal powders by changing the surface morphology of the feedstock without altering its composition.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Thermal conductivity of metal powders for powder bed additive manufacturing
    Wei, Lien Chin
    Ehrlich, Lili E.
    Powell-Palm, Matthew J.
    Montgomery, Colt
    Beuth, Jack
    Malen, Jonathan A.
    ADDITIVE MANUFACTURING, 2018, 21 : 201 - 208
  • [32] Characterization of Ni–Ti Alloy Powders for Use in Additive Manufacturing
    Gozde S. Altug-Peduk
    Savas Dilibal
    Ola Harrysson
    Sunullah Ozbek
    Harvey West
    Russian Journal of Non-Ferrous Metals, 2018, 59 : 433 - 439
  • [33] Optimized Filling of a Given Cuboid with Spherical Powders for Additive Manufacturing
    Duriagina, Zoya
    Lemishka, Igor
    Litvinchev, Igor
    Marmolejo, Jose Antonio
    Pankratov, Alexander
    Romanova, Tatiana
    Yaskov, Georgy
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (04) : 853 - 868
  • [34] Optimized Filling of a Given Cuboid with Spherical Powders for Additive Manufacturing
    Zoya Duriagina
    Igor Lemishka
    Igor Litvinchev
    Jose Antonio Marmolejo
    Alexander Pankratov
    Tatiana Romanova
    Georgy Yaskov
    Journal of the Operations Research Society of China, 2021, 9 : 853 - 868
  • [35] Electrolyte-Plasma Production of Metal Powders for Additive Manufacturing
    Kayumov, R. R.
    Kuputdinova, A. I.
    Gaisin, A. F.
    METAL SCIENCE AND HEAT TREATMENT, 2024, 66 (1-2) : 32 - 37
  • [36] Flow rate ranges for spherical metallic powders for additive manufacturing
    Jens Kroeger
    Thomas Poirié
    Pouya Moghimian
    Frédéric Marion
    Frédéric Larouche
    Progress in Additive Manufacturing, 2022, 7 : 411 - 418
  • [37] Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing
    Quy Bau Nguyen
    Nai, Mui Ling Sharon
    Zhu, Zhiguang
    Sun, Chen-Nan
    Wei, Jun
    Zhou, Wei
    ENGINEERING, 2017, 3 (05) : 695 - 700
  • [38] Insights into the assessment of spreadability of stainless steel powders in additive manufacturing
    Haydari, Zobaideh
    Talebi, Fatemeh
    Mehrabi, Mozhdeh
    Gardy, Jabbar
    Moeni, Masome
    Bayly, Andrew E.
    Hassanpour, Ali
    POWDER TECHNOLOGY, 2024, 439
  • [39] High-quality spherical zirconium alloy powders prepared by thermal plasma treatment for additive manufacturing
    Liu, Bowen
    He, Gongming
    Liu, Ying
    Yue, Meifeng
    Lian, Lixian
    MATERIALS LETTERS, 2021, 288
  • [40] Optical absorptivity of diamond powders and polycrystalline films
    Physics Department, Moscow State University, 119899 Moscow, Russia
    不详
    J. Wide Bandgap Mater., 1 (5-12):