High absorptivity nanotextured powders for additive manufacturing

被引:0
|
作者
Tertuliano, Ottman A. [1 ,2 ]
Depond, Philip J. [2 ,3 ]
Lee, Andrew C. [4 ]
Hong, Jiho [4 ]
Doan, David [2 ]
Capaldi, Luc [1 ]
Brongersma, Mark [4 ]
Gu, X. Wendy [2 ]
Matthews, Manyalibo J. [3 ]
Cai, Wei [2 ]
Lew, Adrian J. [2 ]
机构
[1] Univ Penn, Mech Engn & Appl Mech, 220 S 33rd St, Philadelphia, PA 19104 USA
[2] Stanford Univ, Mech Engn, 452 Escondido Mall, Stanford, CA 94305 USA
[3] Lawrence Livermore Natl Lab, Mat Sci Div, 7000 East Ave, Livermore, CA 94550 USA
[4] Stanford Univ, Mat Sci & Engn, 496 Lomita Mall, Suite 102, Stanford, CA 94305 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 36期
基金
美国国家科学基金会;
关键词
SELECTIVE LASER; TUNGSTEN; STEEL; DENUDATION; REFLECTION; MECHANISMS; PARAMETER; DESIGN; CU;
D O I
10.1126/sciadv.adp0003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread application of metal additive manufacturing (AM) is limited by the ability to control the complex interactions between the energy source and the feedstock material. Here, we develop a generalizable process to introduce nanoscale grooves to the surface of metal powders which increases the powder absorptivity by up to 70% during laser powder bed fusion. Absorptivity enhancements in copper, copper-silver, and tungsten enable energy-efficient manufacturing, with printing of pure copper at relative densities up to 92% using laser energy densities as low as 83 joules per cubic millimeter. Simulations show that the enhanced powder absorptivity results from plasmon-enabled light concentration in nanoscale grooves combined with multiple scattering events. The approach taken here demonstrates a general method to enhance the absorptivity and printability of reflective and refractory metal powders by changing the surface morphology of the feedstock without altering its composition.
引用
收藏
页数:11
相关论文
共 50 条
  • [2] In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
    Trapp, Johannes
    Rubenchik, Alexander M.
    Guss, Gabe
    Matthews, Manyalibo J.
    APPLIED MATERIALS TODAY, 2017, 9 : 341 - 349
  • [3] Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processes
    Wadge, Matthew D.
    Lowther, Morgan
    Cooper, Timothy P.
    Reynolds, William J.
    Speidel, Alistair
    Carter, Luke N.
    Rabbitt, Daisy
    Kudrynskyi, Zakhar R.
    Felfel, Reda M.
    Ahmed, Ifty
    Clare, Adam T.
    Grant, David M.
    Grover, Liam M.
    Cox, Sophie C.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 317
  • [4] Research Progress on Absorptivity of Selective Laser Melting Additive Manufacturing
    Li S.
    Fu G.
    Li H.
    Peng Q.
    Xiao H.
    Zhang J.
    Zhang Z.
    Cailiao Daobao/Materials Reports, 2023, 37 (24):
  • [5] A Review on Metal Powders in Additive Manufacturing
    Saheb, Shaik Himam
    Durgam, Vinay Kumar
    Chandrashekhar, A.
    THIRD INTERNATIONAL CONFERENCE ON INVENTIVE MATERIAL SCIENCE APPLICATIONS (ICIMA 2020), 2020, 2281
  • [6] Optimising metal powders for additive manufacturing
    Clayton, Jamie
    Deffley, Rob
    Metal Powder Report, 2014, 69 (05) : 14 - 17
  • [7] BOEHLER AMPO POWDERS FOR ADDITIVE MANUFACTURING
    Rivolta, Alberto
    METALLURGIA ITALIANA, 2019, (06): : 62 - 63
  • [8] High-silicon electrical steel powders aimed for additive manufacturing
    Pinotti, Vitor E.
    Andreoli, Angelo F.
    Nakahashi, Mayumi A.
    Boccalini Jr, Mario
    Landgraf, Fernando J. G.
    Gargarella, Piter
    POWDER TECHNOLOGY, 2024, 444
  • [9] Manufacturing Processes and Powder Property of Metal Powders for Additive Manufacturing
    Yamada, Shinnosuke
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 71 (12): : 610 - 618
  • [10] Production of fine polymer powders for additive manufacturing
    Altin, Ergün
    Sander, Steffen
    PPCJ Polymers Paint Colour Journal, 2019, 209 (4651): : 26 - 27