Radiomics and Deep Features: Robust Classification of Brain Hemorrhages and Reproducibility Analysis Using a 3D Autoencoder Neural Network

被引:10
|
作者
Bijari, Salar [1 ]
Sayfollahi, Sahar [2 ]
Mardokh-Rouhani, Shiwa [3 ]
Bijari, Sahar [4 ]
Moradian, Sadegh [5 ]
Zahiri, Ziba [6 ]
Rezaeijo, Seyed Masoud [7 ,8 ]
机构
[1] Kurdistan Univ Med Sci, Fac Paramed, Dept Radiol, POB 66177-13446, Sanandaj, Iran
[2] Iran Univ Med Sci, Sch Med, Dept Neurosurg, POB 14496-14535, Tehran, Iran
[3] Univ Kurdistan, Fac Engn, Mech Engn Grp, POB 66177-15175, Sanandaj, Iran
[4] Shahid Sadoughi Univ Med Sci, Sch Publ Hlth, Dept Aging & Hlth, POB 89151-73160, Yazd, Iran
[5] Univ Tehran Med Sci, Dept Radiol, POB 14197-33151, Tehran, Iran
[6] Ahvaz Jundishapur Univ Med Sci, Golestan Hosp, Dept Radiat Oncol, POB 61357-15794, Ahvaz, Iran
[7] Ahvaz Jundishapur Univ Med Sci, Fac Med, Dept Med Phys, PO Box 61357-15794, Ahvaz, Iran
[8] Ahvaz Jundishapur Univ Med Sci, Canc Res Ctr, POB 61357-15794, Ahvaz, Iran
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
关键词
reproducible; brain; hemorrhage; radiomics features; deep features; machine learning;
D O I
10.3390/bioengineering11070643
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study evaluates the reproducibility of machine learning models that integrate radiomics and deep features (features extracted from a 3D autoencoder neural network) to classify various brain hemorrhages effectively. Using a dataset of 720 patients, we extracted 215 radiomics features (RFs) and 15,680 deep features (DFs) from CT brain images. With rigorous screening based on Intraclass Correlation Coefficient thresholds (>0.75), we identified 135 RFs and 1054 DFs for analysis. Feature selection techniques such as Boruta, Recursive Feature Elimination (RFE), XGBoost, and ExtraTreesClassifier were utilized alongside 11 classifiers, including AdaBoost, CatBoost, Decision Trees, LightGBM, Logistic Regression, Naive Bayes, Neural Networks, Random Forest, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). Evaluation metrics included Area Under the Curve (AUC), Accuracy (ACC), Sensitivity (SEN), and F1-score. The model evaluation involved hyperparameter optimization, a 70:30 train-test split, and bootstrapping, further validated with the Wilcoxon signed-rank test and q-values. Notably, DFs showed higher accuracy. In the case of RFs, the Boruta + SVM combination emerged as the optimal model for AUC, ACC, and SEN, while XGBoost + Random Forest excelled in F1-score. Specifically, RFs achieved AUC, ACC, SEN, and F1-scores of 0.89, 0.85, 0.82, and 0.80, respectively. Among DFs, the ExtraTreesClassifier + Naive Bayes combination demonstrated remarkable performance, attaining an AUC of 0.96, ACC of 0.93, SEN of 0.92, and an F1-score of 0.92. Distinguished models in the RF category included SVM with Boruta, Logistic Regression with XGBoost, SVM with ExtraTreesClassifier, CatBoost with XGBoost, and Random Forest with XGBoost, each yielding significant q-values of 42. In the DFs realm, ExtraTreesClassifier + Naive Bayes, ExtraTreesClassifier + Random Forest, and Boruta + k-NN exhibited robustness, with 43, 43, and 41 significant q-values, respectively. This investigation underscores the potential of synergizing DFs with machine learning models to serve as valuable screening tools, thereby enhancing the interpretation of head CT scans for patients with brain hemorrhages.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network
    Ma, Ming
    Kovalchuk, Nataliya
    Buyyounouski, Mark K.
    Xing, Lei
    Yang, Yong
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (12):
  • [42] Characteristic Analysis of Data Preprocessing for 3D Point Cloud Classification Based on a Deep Neural Network: PointNet
    Seo, Hogeon
    Joo, Sungmoon
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2021, 41 (01) : 19 - 24
  • [43] Framework for Cancer Detection using Deep Wavelet Autoencoder & Neural Network in Brain Images
    Kavitha, M.
    Rajdakshan, S. B.
    Tamilselvan, S.
    Fardhin, M. Mohamed
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (03): : 172 - 175
  • [44] Brain Age Estimation using Brain MRI and 3D Convolutional Neural Network
    Pardakhti, Nastsrsn
    Sajedi, Hedieh
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 386 - 390
  • [45] Brain MR Image Classification for Glioma Tumor detection using Deep Convolutional Neural Network Features
    Latif, Ghazanfar
    Iskandar, D. N. F. Awang
    Alghazo, Jaafar
    Butt, M. Mohsin
    CURRENT MEDICAL IMAGING, 2021, 17 (01) : 56 - 63
  • [46] Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
    Kleesiek, Jens
    Urban, Gregor
    Hubert, Alexander
    Schwarz, Daniel
    Maier-Hein, Klaus
    Bendszus, Martin
    Biller, Armin
    NEUROIMAGE, 2016, 129 : 460 - 469
  • [47] Violence Detection Using Spatiotemporal Features with 3D Convolutional Neural Network
    Ullah, Fath U. Min
    Ullah, Amin
    Muhammad, Khan
    Ul Haq, Ijaz
    Baik, Sung Wook
    SENSORS, 2019, 19 (11)
  • [48] Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics
    Guo, Yixian
    Song, Qiong
    Jiang, Mengmeng
    Guo, Yinglong
    Xu, Peng
    Zhang, Yiqian
    Fu, Chi-Cheng
    Fang, Qu
    Zeng, Mengsu
    Yao, Xiuzhong
    ACADEMIC RADIOLOGY, 2021, 28 (09) : E258 - E266
  • [49] Vehicle Type Classification Using Hybrid Features and a Deep Neural Network
    Sathyanarayana, N.
    Narasimhamurthy, Anand M.
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2022, 13 (01)
  • [50] POLARIMETRIC SAR TERRAIN CLASSIFICATION USING 3D CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lamei
    Chen, Zexi
    Zou, Bin
    Gao, Ye
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4551 - 4554