Radiomics and Deep Features: Robust Classification of Brain Hemorrhages and Reproducibility Analysis Using a 3D Autoencoder Neural Network

被引:10
|
作者
Bijari, Salar [1 ]
Sayfollahi, Sahar [2 ]
Mardokh-Rouhani, Shiwa [3 ]
Bijari, Sahar [4 ]
Moradian, Sadegh [5 ]
Zahiri, Ziba [6 ]
Rezaeijo, Seyed Masoud [7 ,8 ]
机构
[1] Kurdistan Univ Med Sci, Fac Paramed, Dept Radiol, POB 66177-13446, Sanandaj, Iran
[2] Iran Univ Med Sci, Sch Med, Dept Neurosurg, POB 14496-14535, Tehran, Iran
[3] Univ Kurdistan, Fac Engn, Mech Engn Grp, POB 66177-15175, Sanandaj, Iran
[4] Shahid Sadoughi Univ Med Sci, Sch Publ Hlth, Dept Aging & Hlth, POB 89151-73160, Yazd, Iran
[5] Univ Tehran Med Sci, Dept Radiol, POB 14197-33151, Tehran, Iran
[6] Ahvaz Jundishapur Univ Med Sci, Golestan Hosp, Dept Radiat Oncol, POB 61357-15794, Ahvaz, Iran
[7] Ahvaz Jundishapur Univ Med Sci, Fac Med, Dept Med Phys, PO Box 61357-15794, Ahvaz, Iran
[8] Ahvaz Jundishapur Univ Med Sci, Canc Res Ctr, POB 61357-15794, Ahvaz, Iran
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
关键词
reproducible; brain; hemorrhage; radiomics features; deep features; machine learning;
D O I
10.3390/bioengineering11070643
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study evaluates the reproducibility of machine learning models that integrate radiomics and deep features (features extracted from a 3D autoencoder neural network) to classify various brain hemorrhages effectively. Using a dataset of 720 patients, we extracted 215 radiomics features (RFs) and 15,680 deep features (DFs) from CT brain images. With rigorous screening based on Intraclass Correlation Coefficient thresholds (>0.75), we identified 135 RFs and 1054 DFs for analysis. Feature selection techniques such as Boruta, Recursive Feature Elimination (RFE), XGBoost, and ExtraTreesClassifier were utilized alongside 11 classifiers, including AdaBoost, CatBoost, Decision Trees, LightGBM, Logistic Regression, Naive Bayes, Neural Networks, Random Forest, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). Evaluation metrics included Area Under the Curve (AUC), Accuracy (ACC), Sensitivity (SEN), and F1-score. The model evaluation involved hyperparameter optimization, a 70:30 train-test split, and bootstrapping, further validated with the Wilcoxon signed-rank test and q-values. Notably, DFs showed higher accuracy. In the case of RFs, the Boruta + SVM combination emerged as the optimal model for AUC, ACC, and SEN, while XGBoost + Random Forest excelled in F1-score. Specifically, RFs achieved AUC, ACC, SEN, and F1-scores of 0.89, 0.85, 0.82, and 0.80, respectively. Among DFs, the ExtraTreesClassifier + Naive Bayes combination demonstrated remarkable performance, attaining an AUC of 0.96, ACC of 0.93, SEN of 0.92, and an F1-score of 0.92. Distinguished models in the RF category included SVM with Boruta, Logistic Regression with XGBoost, SVM with ExtraTreesClassifier, CatBoost with XGBoost, and Random Forest with XGBoost, each yielding significant q-values of 42. In the DFs realm, ExtraTreesClassifier + Naive Bayes, ExtraTreesClassifier + Random Forest, and Boruta + k-NN exhibited robustness, with 43, 43, and 41 significant q-values, respectively. This investigation underscores the potential of synergizing DFs with machine learning models to serve as valuable screening tools, thereby enhancing the interpretation of head CT scans for patients with brain hemorrhages.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Deep 3D Convolution Neural Network For CT Brain Hemorrhage Classification
    Jnawali, Kamal
    Arbabshirani, Mohammad R.
    Rao, Navalgund
    Patel, Aalpen A.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [2] Brain Tumor Classification Using 3D Convolutional Neural Network
    Pei, Linmin
    Vidyaratne, Lasitha
    Hsu, Wei-Wen
    Rahman, Md Monibor
    Iftekharuddin, Khan M.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 335 - 342
  • [3] Robust Deep Neural Network Using Fuzzy Denoising Autoencoder
    Han, Hong-Gui
    Zhang, Hui-Juan
    Qiao, Jun-Fei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (04) : 1356 - 1375
  • [4] Robust Deep Neural Network Using Fuzzy Denoising Autoencoder
    Hong-Gui Han
    Hui-Juan Zhang
    Jun-Fei Qiao
    International Journal of Fuzzy Systems, 2020, 22 : 1356 - 1375
  • [5] Robust classification of 3D objects using discrete orthogonal moments and deep neural networks
    Zouhir Lakhili
    Abdelmajid El Alami
    Abderrahim Mesbah
    Aissam Berrahou
    Hassan Qjidaa
    Multimedia Tools and Applications, 2020, 79 : 18883 - 18907
  • [6] Robust classification of 3D objects using discrete orthogonal moments and deep neural networks
    Lakhili, Zouhir
    El Alami, Abdelmajid
    Mesbah, Abderrahim
    Berrahou, Aissam
    Qjidaa, Hassan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (27-28) : 18883 - 18907
  • [7] Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network
    Mallick, Pradeep Kumar
    Ryu, Seuc Ho
    Satapathy, Sandeep Kumar
    Mishra, Shruti
    Gia Nhu Nguyen
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 46278 - 46287
  • [8] A combination method of stacked autoencoder and 3D deep residual network for hyperspectral image classification
    Zhao, Jinling
    Hu, Lei
    Dong, Yingying
    Huang, Linsheng
    Weng, Shizhuang
    Zhang, Dongyan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [9] 3D image processing using deep neural network
    Fujii, Toshiaki
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2019, 2019, 10997
  • [10] 3D Shape Classification Using 3D Discrete Moments and Deep Neural Networks
    Lakhili, Zouhir
    El Alami, Abdelmajid
    Mesbah, Abderrahim
    Berrahou, Aissam
    Qjidaa, Hassan
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,