Data-Driven Model Predictive Control for Redundant Manipulators With Unknown Model

被引:11
|
作者
Yan, Jingkun [1 ,2 ]
Jin, Long [1 ,2 ]
Hu, Bin [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
Manipulators; Task analysis; Manipulator dynamics; Robots; Kinematics; Jacobian matrices; Analytical models; Model predictive control (MPC); neural dynamics (ND); redundant manipulators; unknown model; RECURRENT NEURAL-NETWORKS; ROBOT MANIPULATORS; TRACKING CONTROL; MPC; ROBUST; SAFE; UNCERTAINTY; STABILITY; SCHEME;
D O I
10.1109/TCYB.2024.3408254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tracking control of redundant manipulators plays a crucial role in robotics research and generally requires accurate knowledge of models of redundant manipulators. When the model information of a redundant manipulator is unknown, the trajectory-tracking control with model-based methods may fail to complete a given task. To this end, this article proposes a data-driven neural dynamics-based model predictive control (NDMPC) algorithm, which consists of a model predictive control (MPC) scheme, a neural dynamics (ND) solver, and a discrete-time Jacobian matrix (DTJM) updating law. With the help of the DTJM updating law, the future output of the model-unknown redundant manipulator is predicted, and the MPC scheme for trajectory tracking is constructed. The ND solver is designed to solve the MPC scheme to generate control input driving the redundant manipulator. The convergence of the proposed data-driven NDMPC algorithm is proven via theoretical analyses, and its feasibility and superiority are demonstrated via simulations and experiments on a redundant manipulator. Under the drive of the proposed algorithm, the redundant manipulator successfully carries out the trajectory-tracking task without the need for its kinematics model.
引用
收藏
页码:5901 / 5911
页数:11
相关论文
共 50 条
  • [41] Data-Driven Motion-Force Control Scheme for Redundant Manipulators: A Kinematic Perspective
    Fan, Jialiang
    Jin, Long
    Xie, Zhengtai
    Li, Shuai
    Zheng, Yu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5338 - 5347
  • [42] Data-driven Gait-predictive Model for Anticipatory Prosthesis Control
    Dey, Sharmita
    Schilling, Arndt F.
    2022 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2022,
  • [43] Safe Data-Driven Model Predictive Control of Systems With Complex Dynamics
    Mitsioni, Ioanna
    Tajvar, Pouria
    Kragic, Danica
    Tumova, Jana
    Pek, Christian
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (04) : 3242 - 3258
  • [44] Data-Driven Distributionally Robust Bounds for Stochastic Model Predictive Control
    Fochesato, Marta
    Lygeros, John
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3611 - 3616
  • [45] LMI-based Data-Driven Robust Model Predictive Control
    Hoang Hai Nguyen
    Friedel, Maurice
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2023, 56 (02): : 4783 - 4788
  • [46] Data-Driven Model Predictive Control using Interpolated Koopman Generators
    Peitz, Sebastian
    Otto, Samuel E.
    Rowley, Clarence W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03): : 2162 - 2193
  • [47] Linearized Gaussian Processes for Fast Data-driven Model Predictive Control
    Nghiem, Truong X.
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1629 - 1634
  • [48] Data-Driven LSTM Model and Predictive Control for Vehicle Lateral Motion
    Kim, Kyeong Hyeon
    Jeong, Cheolmin
    Kim, Junghyun
    Lee, Sanghyuk
    Kang, Chang Mook
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (06) : 3635 - 3644
  • [49] Model-predictive kinetic control with data-driven models on EAST
    Moreau, D.
    Wang, S.
    Qian, J. P.
    Yuan, Q.
    Huang, Y.
    Li, Y.
    Ding, S.
    Du, H.
    Gong, X.
    Li, M.
    Liu, H.
    Luo, Z.
    Zeng, L.
    Olofsson, E.
    Sammuli, B.
    Artaud, J. F.
    Ekedahl, A.
    Witrant, E.
    NUCLEAR FUSION, 2024, 64 (12)
  • [50] Data-Driven Switched Model Predictive Control Without Terminal Ingredients
    Wang, Zhi-Min
    Liu, Kun-Zhi
    Wen, Si-Xin
    Sun, Xi-Ming
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 4247 - 4260