Data-driven approaches to study the spectral properties of chemical structures

被引:2
|
作者
Masmali, Ibtisam [1 ]
Nadeem, Muhammad Faisal [2 ]
Mufti, Zeeshan Saleem [3 ]
Ahmad, Ali [4 ]
Koam, Ali N. A. [1 ]
Ghazwani, Haleemah [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
关键词
Predictive modeling; Machine learning; Bismuth tri-iodide; Benzene ring; Energy; Data-driven methodologies; Eigenvalues; INCIDENCE ENERGY; MACHINE; CHEMISTRY;
D O I
10.1016/j.heliyon.2024.e37459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total it-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Data-driven approaches to education governance and their implications
    Skedsmo, Guri
    Huber, Stephan Gerhard
    EDUCATIONAL ASSESSMENT EVALUATION AND ACCOUNTABILITY, 2022, 34 (01) : 1 - 4
  • [32] A Survey on Data-Driven Approaches in Educational Games
    Hooshyar, Danial
    Lee, Chanhee
    Lim, Heuiseok
    PROCEEDINGS OF 2016 2ND INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH) - INFORMATION SCIENCE FOR GREEN SOCIETY AND ENVIRONMENT, 2016, : 291 - 295
  • [33] Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
    Colbrook, Matthew J.
    Townsend, Alex
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (01) : 221 - 283
  • [34] Data-driven approaches to education governance and their implications
    Guri Skedsmo
    Stephan Gerhard Huber
    Educational Assessment, Evaluation and Accountability, 2022, 34 : 1 - 4
  • [35] Organic Solvent Nanofiltration and Data-Driven Approaches
    Piccard, Pieter-Jan
    Borges, Pedro
    Cleuren, Bart
    Hooyberghs, Jef
    Buekenhoudt, Anita
    SEPARATIONS, 2023, 10 (09)
  • [36] Data-Driven Modelling: Concepts, Approaches and Experiences
    Solomatine, D.
    See, L. M.
    Abrahart, R. J.
    PRACTICAL HYDROINFORMATICS: COMPUTATIONAL INTELLIGENCE AND TECHNOLOGICAL DEVELOPMENTS IN WATER APPLICATIONS, 2008, 68 : 17 - +
  • [37] Data-driven approaches to digital human modeling
    Magnenat-Thalmann, N
    Seo, H
    2ND INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2004, : 380 - 387
  • [38] Integrating knowledge-driven and data-driven approaches to modeling
    Todorovski, L
    Dzeroski, S
    ECOLOGICAL MODELLING, 2006, 194 (1-3) : 3 - 13
  • [39] Data-driven approaches for runoff prediction using distributed data
    Heechan Han
    Ryan R. Morrison
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2153 - 2171
  • [40] Data-driven approaches for runoff prediction using distributed data
    Han, Heechan
    Morrison, Ryan R.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (08) : 2153 - 2171