Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics

被引:0
|
作者
Kumar, Himanshu [1 ]
Pourhassan, Behnam [1 ,2 ,3 ,4 ]
Sakalli, Izzet [5 ]
机构
[1] Damghan Univ, Sch Phys, Damghan 3671641167, Iran
[2] Khazar Univ, Ctr Theoret Phys, 41 Mehseti St, Baku AZ1096, Azerbaijan
[3] Chandigarh Univ, Univ Ctr Res & Dev, Mohali 140413, Punjab, India
[4] Istanbul Tech Univ, Phys Dept, TR-34469 Istanbul, Turkiye
[5] Eastern Mediterranean Univ, Phys Dept, Via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkiye
关键词
HOLOGRAPHIC PRINCIPLE; ENTROPY; FLUCTUATIONS; GRAVITY;
D O I
10.1016/j.nuclphysb.2024.116672
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
B S T R A C T this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Thermodynamics of charged black hole
    Sharif, M.
    Khan, Amjad
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1238 - 1249
  • [42] Gravitational quantum effects on power spectra and spectral indices with higher-order corrections
    Zhu, Tao
    Wang, Anzhong
    Cleaver, Gerald
    Kirsten, Klaus
    Sheng, Qin
    PHYSICAL REVIEW D, 2014, 90 (06)
  • [43] Loop Quantum Gravity treatment of Charged Black Hole Thermodynamics
    Daas, Tirtho
    10TH SOUTHEAST ASIA ASTRONOMY NETWORK, 2019, 1231
  • [44] Higher spin fermions in the BTZ black hole
    Datta, Shouvik
    David, Justin R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (07):
  • [45] Higher spin fermions in the BTZ black hole
    Shouvik Datta
    Justin R. David
    Journal of High Energy Physics, 2012
  • [46] EGUP-corrected thermodynamics of BTZ black hole
    Hamil, B.
    Lutfuoglu, B. C.
    Dahbi, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (09-10):
  • [47] EGUP-corrected thermodynamics of BTZ black hole
    Hamil, B.
    Lutfuoglu, B. C.
    Dahbi, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (09N10):
  • [48] EUP-corrected thermodynamics of BTZ black hole
    Hamil, B.
    Lutfuoglu, B. C.
    Dahbi, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (22):
  • [49] Thermodynamics of a BTZ black hole solution with a Horndeski source
    Bravo-Gaete, Moises
    Hassaine, Mokhtar
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [50] Thermodynamics and phase transition of BTZ black hole in a cavity
    Huang, Yuchen
    Tao, Jun
    NUCLEAR PHYSICS B, 2022, 982