Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics

被引:0
|
作者
Kumar, Himanshu [1 ]
Pourhassan, Behnam [1 ,2 ,3 ,4 ]
Sakalli, Izzet [5 ]
机构
[1] Damghan Univ, Sch Phys, Damghan 3671641167, Iran
[2] Khazar Univ, Ctr Theoret Phys, 41 Mehseti St, Baku AZ1096, Azerbaijan
[3] Chandigarh Univ, Univ Ctr Res & Dev, Mohali 140413, Punjab, India
[4] Istanbul Tech Univ, Phys Dept, TR-34469 Istanbul, Turkiye
[5] Eastern Mediterranean Univ, Phys Dept, Via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkiye
关键词
HOLOGRAPHIC PRINCIPLE; ENTROPY; FLUCTUATIONS; GRAVITY;
D O I
10.1016/j.nuclphysb.2024.116672
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
B S T R A C T this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Higher Order Quantum Corrections of Rotating BTZ Black Hole
    Pourhassan, B.
    Kokabi, K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (03) : 780 - 791
  • [2] Higher Order Quantum Corrections of Rotating BTZ Black Hole
    B. Pourhassan
    K. Kokabi
    International Journal of Theoretical Physics, 2018, 57 : 780 - 791
  • [3] Quantum corrections to thermodynamics of BTZ black hole
    Nadeem-ul-islam
    Ganai, Prince A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (11):
  • [4] Quantum corrections to the thermodynamics of rotating charged BTZ black hole in gravity's rainbow
    Lutfuoglu, B. C.
    Hamil, B.
    Dahbi, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (18):
  • [5] Entanglement thermodynamics of the generalized charged BTZ black hole
    Mansoori, Seyed Ali Hosseini
    Mirza, Behrouz
    Darareh, Mahdi Davoudi
    Janbaz, Sharooz
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (12):
  • [6] Quantum corrections to the spectroscopy of a BTZ black hole via periodicity
    Xian-Ming Liu
    Xin-Yun Hu
    Qiang Li
    Xiao-Xiong Zeng
    General Relativity and Gravitation, 2014, 46
  • [7] Quantum corrections to the spectroscopy of a BTZ black hole via periodicity
    Liu, Xian-Ming
    Hu, Xin-Yun
    Li, Qiang
    Zeng, Xiao-Xiong
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (01) : 1 - 12
  • [8] BPS-like bound and thermodynamics of the charged BTZ black hole
    Cadoni, Mariano
    Monni, Cristina
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [9] The effect of higher-order extended uncertainty principle on the black hole thermodynamics
    Hamil, B.
    Lutfuoglu, B. C.
    EPL, 2021, 134 (05)
  • [10] First order corrections to the black hole thermodynamics in higher curvature theories of gravity
    Xiao, Yong
    PHYSICAL REVIEW D, 2022, 106 (06)