Homoclinic Solutions for a Discrete Periodic Hamiltonian System with Perturbed Terms

被引:0
|
作者
Chen, Yanshan [1 ,2 ]
Zhou, Zhan [1 ,3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
[3] Guangzhou Univ, Guangzhou Ctr Appl Math, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic discrete Hamiltonian systems; Homoclinic solutions; Difference equations; Variational method; TOPOLOGICAL METHODS; DIFFERENCE-SCHEMES; NUMERICAL-SOLUTION; ORBITS; DISCONJUGACY; EXISTENCE; EQUATIONS;
D O I
10.1007/s12220-024-01805-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this work is to obtain, in a more optimal way, sufficient conditions for the existence of at least one homoclinic solution to a periodic discrete Hamiltonian system with perturbed terms, -Delta[p(n)Delta u(n-1)]+L(n)u(n)=del F(n,u(n))+h(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta [p(n)\Delta u(n-1)]+L(n)u(n)=\nabla F(n,u(n))+h(n) \end{aligned}$$\end{document}where n is an element of Z,u is an element of RN,p,L:Z -> RNxN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {Z}, \;u\in \mathbb {R}<^>N, p,L:\mathbb {Z}\rightarrow \mathbb {R}<^>{N\times N}$$\end{document} and F(n,u):ZxRN -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(n,u):\mathbb {Z}\times \mathbb {R}<^>{N}\rightarrow \mathbb {R}$$\end{document}. In this paper, p(n) and L(n) are T-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T-$$\end{document}periodic with respect to n is an element of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {Z}$$\end{document}, and they are not required to be positive definite. Whether at infinity or at the origin, the nonlinearity F need not be superquadratic, but can be asymptotically quadratic or a mixture of them. This character of superquadraticity is essential as observed in previous literature. Moreover, the existence of homoclinic solutions is shown to remain when the discrete Hamiltonian system involves some perturbations h is an element of l1\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in l<^>1{\setminus }\{0\}$$\end{document}. To the best of our knowledge, this is the first attempt to obtain the existence of homoclinic solutions for a perturbed discrete Hamiltonian system in the case where p and L are non-positive definite. Our work is an improvement and complement to previous work on the existence of homoclinic solutions for discrete or continuous Hamiltonian systems. Furthermore, our superior results may be applicable to other variational problems.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Homoclinic solutions for a class of second order discrete Hamiltonian systems
    Tang, Xian Hua
    Lin, Xiao Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (03) : 609 - 622
  • [22] Heteroclinic and homoclinic solutions for a singular Hamiltonian system
    Borges, Maria Joao
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2006, 17 : 1 - 32
  • [23] Homoclinic solutions for Hamiltonian system with impulsive effects
    Liu, Jian
    Yan, Lizhao
    Xu, Fei
    Lai, Mingyong
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [24] Homoclinic Solutions for a Class of Second Order Discrete Hamiltonian Systems
    Xian Hua TANG
    Xiao Yan LIN
    Acta Mathematica Sinica, 2012, 28 (03) : 609 - 622
  • [25] Homoclinic solutions for a class of second order discrete Hamiltonian systems
    Xian Hua Tang
    Xiao Yan Lin
    Acta Mathematica Sinica, English Series, 2012, 28 : 609 - 622
  • [26] Homoclinic Solutions for a Class of Second Order Discrete Hamiltonian Systems
    Xian Hua TANG
    Xiao Yan LIN
    Acta Mathematica Sinica,English Series, 2012, (03) : 609 - 622
  • [27] Homoclinic solutions for a class of second order discrete Hamiltonian systems
    Tang, X. H.
    Lin, Xiaoyan
    Xiao, Li
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (11) : 1257 - 1273
  • [28] Homoclinic solutions for Hamiltonian system with impulsive effects
    Jian Liu
    Lizhao Yan
    Fei Xu
    Mingyong Lai
    Advances in Difference Equations, 2018
  • [29] Perturbed Schrodinger lattice systems with superlinear terms: Multiplicity of homoclinic solutions
    Chen, Guanwei
    Ma, Shiwang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [30] Periodic solutions and their stability for some perturbed Hamiltonian systems
    Guirao, Juan L. G.
    Llibre, Jaume
    Vera, Juan A.
    Wade, Bruce A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)