Transport and electrical properties of Si and Ge quantum dots embedded in oxide layers of MOS structures for optoelectronic applications

被引:2
|
作者
Saron, K. M. A. [1 ]
Aouassa, Mansour [1 ]
Hassan, N. K. [2 ]
Aladim, A. K. [1 ]
Ibrahim, Mohammed [1 ]
Bouabdellaoui, Mohammed [3 ]
机构
[1] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Sakaka, Saudi Arabia
[2] Tikrit Univ, Coll Educ pure Sci, Dept Phys, Tikrit, Iraq
[3] Aix Marseille Univ, CNRS, Cent Marseille, IM2NP,UMR 7334, Campus St Jerome, F-13397 Marseille, France
关键词
LEVEL TRANSIENT SPECTROSCOPY; SEMICONDUCTOR CAPACITORS; GERMANIUM NANOCRYSTALS; INTERFACE STATES; TRAPS; CHARGE; PASSIVATION; CENTERS; DLTS;
D O I
10.1007/s10854-024-13542-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates the structural, morphological, and electrical properties of silicon (Si) and germanium (Ge) quantum dots (QDs) embedded within thin SiO2 layers in Metal-Oxide-Semiconductor (MOS) capacitors for optoelectronic applications. The QDs are formed through solid-state dewetting of ultra-thin amorphous germanium-on-insulator (a-GOI) and amorphous silicon-on-insulator (a-SOI) layers, grown by Molecular Beam Epitaxy (MBE). Morphological and structural analyses are performed using Atomic Force Microscopy (AFM) and High-Resolution Transmission Electron Microscopy (HR-TEM), while electrical properties are examined via Capacitance-Voltage (C-V) and Deep-Level Transient Spectroscopy (DLTS) measurements. The Si and Ge QDs exhibit high density, uniformity, and spherical shapes with tunable sizes and densities, making them promising for optoelectronic applications. Their integration into MOS structures induces a shift in the flat-band voltage and increases the hysteresis in C-V curves, suggesting the creation of switchable charge states. These findings underscore the potential of Si and Ge QDs for enhancing the functionality of advanced optoelectronic devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix
    A. B. Talochkin
    I. B. Chistokhin
    Semiconductors, 2011, 45 : 907 - 911
  • [22] Interfacial Control and Electrical Properties of Ge MOS structures
    Takagi, S.
    Taoka, N.
    Takenaka, M.
    SILICON NITRIDE, SILICON DIOXIDE, AND EMERGING DIELECTRICS 10, 2009, 19 (02): : 67 - +
  • [23] ZnO quantum dots: Physical properties and optoelectronic applications
    Fonoberov, Vladimir A.
    Balandin, Alexander A.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2006, 1 (01) : 19 - 38
  • [24] Hopping conduction and field effect in Si modulation-doped structures with embedded Ge quantum dots
    Biskupski, G
    Adkins, CJ
    Boucher, R
    Dvurechenskii, AV
    Nikiforov, AI
    Pchelyakov, OP
    Biskupski, G
    PHYSICAL REVIEW B, 1999, 59 (19): : 12598 - 12603
  • [25] Spin transport and spin relaxation in Ge/Si quantum dots
    Zinovieva, AF
    Nenashev, A
    Dvurechenskii, A
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1393 - 1394
  • [26] Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance
    Kuo, M. H.
    Wang, C. C.
    Lai, W. T.
    George, Tom
    Li, P. W.
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [27] Heterostructures with self-organized quantum dots of Ge on Si for optoelectronic devices
    Lozovoy, K. A.
    Voytsekhovskiy, A. V.
    Kokhanenko, A. P.
    Satdarov, V. G.
    Pchelyakov, O. P.
    Nikiforov, A. I.
    OPTO-ELECTRONICS REVIEW, 2014, 22 (03) : 171 - 177
  • [28] Raman determination of uniformity of multilayer Si/Ge structures with Ge quantum dots
    Talochkin, A. B.
    Cherkov, A. G.
    NANOTECHNOLOGY, 2009, 20 (34)
  • [29] Raman E0 resonance of Ge quantum dots in Si/Ge/Si structures
    Talochkin, AB
    Efanov, AV
    Markov, VA
    Nikiforov, AI
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1999, 63 (02): : 290 - 298
  • [30] Quantum dots in Si-Ge structures synthesized by Ge ion implantation into Si wafers
    Parkhomenko, YN
    Gerasimenko, NN
    NANOSTRUCTURED THIN FILMS AND NANODISPERSION STRENGTHENED COATINGS, 2004, 155 : 203 - 208