Machine Learning-Based Image Forgery Detection Using Light Gradient-Boosting Machine

被引:0
|
作者
Ugale, Meena [1 ]
Midhunchakkaravarthy, J. [1 ]
机构
[1] Lincoln Univ Coll, Petaling Jaya, Selangor, Malaysia
关键词
Block-wise feature extraction; Feature extraction; Forgery detection; Light gradient boosting machine; Machine learning;
D O I
10.1007/978-981-99-9037-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent days, due to the increasing development of digital automation, images have emerged as a significant way to interact as well as transfer messages in our community, and there was a high rise in the number of details transferred in the formation of virtual pictures in the day-to-day life especially with the disclosure of online medias such as Instagram, Twitter, and Facebook. Moreover, uploading pictures on social media and modifying those images with related software apps is considered a common method to do in current days. Even though, if every person does not perform with ominous meanings, but still, there is a noticeable rise in misconduct regarding the malignant image influence as well as updating. This research proposes an image/video forgery identification method by utilizing the light gradient boosting machine (Light-GBM) method to detect the fabrication in the visual data with an increased rate of accuracy. The performance, as well as comparative analysis, is estimated based on the performance metrics such as accuracy at 94.91%, sensitivity at 94.77%, and specificity at 93.26%, respectively, which is superior to the previous techniques.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 50 条
  • [41] Cancer prognosis with machine learning-based modified meta-heuristics and weighted gradient boosting algorithm
    Saranya, P.
    Asha, P.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06): : 2209 - 2225
  • [42] Machine learning-based phishing attack detection
    Hossain S.
    Sarma D.
    Chakma R.J.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 378 - 388
  • [43] Machine learning-based guilt detection in text
    Meque, Abdul Gafar Manuel
    Hussain, Nisar
    Sidorov, Grigori
    Gelbukh, Alexander
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831
  • [45] Machine Learning-Based Detection of Spam Emails
    Bin Siddique, Zeeshan
    Khan, Mudassar Ali
    Din, Ikram Ud
    Almogren, Ahmad
    Mohiuddin, Irfan
    Nazir, Shah
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [46] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [47] Machine Learning-Based Phishing Attack Detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 378 - 388
  • [48] Supervised Machine Learning-based Fall Detection
    Caya, Meo Vincent C.
    Magwili, Glenn V.
    Agulto, Denver L.
    John Laranang, Russell
    Palomo, Louisse Kayle G.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [49] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [50] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29