Module-based machine learning models using sigma profiles of organic linkers to predict gaseous adsorption in metal-organic frameworks

被引:5
|
作者
Cheng, Ya-Hung [1 ]
Sung, I. -Ting [2 ]
Hsieh, Chieh-Ming [1 ]
Lin, Li-Chiang [2 ,3 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Taoyuan 32001, Taiwan
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[3] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA
关键词
Metal-organic frameworks; Machine learning; Molecular simulations; Gas adsorption; Sigma profile; UNITED-ATOM DESCRIPTION; CARBON-DIOXIDE; TRANSFERABLE POTENTIALS; NANOPOROUS MATERIALS; PHASE-EQUILIBRIA; VAPOR-PRESSURE; SURFACE-AREA; CAPTURE; GAS; SOLUBILITY;
D O I
10.1016/j.jtice.2024.105728
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: Metal-organic frameworks (MOFs) have drawn considerable attention for their potential in adsorption applications, such as gas separation and storage. Machine learning (ML) augmented high-throughput screening approaches have emerged as an effective strategy to expedite the materials search. Traditionally, ML models developed to predict the adsorption properties of MOFs rely on various geometrical and chemical descriptors. While these descriptors are effective, they tend to be specific to each MOF's unique structure, completely omitting the modular nature of MOFs. Methods: A new approach is proposed in this study: a modular descriptor based on the sigma profile of MOF organic linkers. These sigma profiles effectively represent the chemical environment of organic linkers. With these profiles as input features, we train extreme gradient boosting (XGBoost) models to predict the Henry's coefficient (KH) of adsorption for hydrocarbons and acid gases in MOFs. Findings: The results show that sigma profiles enhance the prediction accuracy and emerge as the most important features for hydrocarbon gases. This study highlights the potential of sigma profiles in developing accurate ML models for identifying optimal MOF adsorbents. Such an approach could also facilitate an inverse design of MOFs with targeted properties.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] MOFSimplify, machine learning models with extracted stability data of three thousand metal-organic frameworks
    Nandy, Aditya
    Terrones, Gianmarco
    Arunachalam, Naveen
    Duan, Chenru
    Kastner, David W.
    Kulik, Heather J.
    SCIENTIFIC DATA, 2022, 9 (01)
  • [42] Dissecting the Water Uptake Behavior of Metal-Organic Frameworks Using Their Isolated Linkers and Metal Nodes
    Keshavarz, Fatemeh
    CHEMISTRY OF MATERIALS, 2023, 36 (01) : 439 - 449
  • [43] Machine learning: An accelerator for the exploration and application of advanced metal-organic frameworks
    Du, Ruolin
    Xin, Ruiqi
    Wang, Han
    Zhu, Wenkai
    Li, Rui
    Liu, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [44] Examining proton conductivity of metal-organic frameworks by means of machine learning
    Dudakov, Ivan V.
    Savelev, Sergei A.
    Nevolin, Iurii M.
    Mitrofanov, Artem A.
    Korolev, Vadim V.
    Gorbunova, Yulia G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (14) : 6850 - 6857
  • [45] Machine learning assisted predictions for hydrogen storage in metal-organic frameworks
    Salehi, Khashayar
    Rahmani, Mohammad
    Atashrouz, Saeid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (85) : 33260 - 33275
  • [46] Accelerating Discovery of Water Stable Metal-Organic Frameworks by Machine Learning
    Zhang, Zhiming
    Pan, Fusheng
    Mohamed, Saad Aldin
    Ji, Chengxin
    Zhang, Kang
    Jiang, Jianwen
    Jiang, Zhongyi
    SMALL, 2024, 20 (42)
  • [47] Machine learning and descriptor selection for the computational discovery of metal-organic frameworks
    Mukherjee, Krishnendu
    Colon, Yamil J.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 857 - 877
  • [48] Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning
    Karsakov, Grigory V.
    Shirobokov, Vladimir P.
    Kulakova, Alena
    Milichko, Valentin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11): : 3089 - 3095
  • [49] Interpretable Machine-Learning and Big Data Mining to Predict Gas Diffusivity in Metal-Organic Frameworks
    Guo, Shuya
    Huang, Xiaoshan
    Situ, Yizhen
    Huang, Qiuhong
    Guan, Kexin
    Huang, Jiaxin
    Wang, Wei
    Bai, Xiangning
    Liu, Zili
    Wu, Yufang
    Qiao, Zhiwei
    ADVANCED SCIENCE, 2023, 10 (21)
  • [50] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)