Polymer-Derived Silicon Carbide and Boron Nitride Nanotube Composites with High Thermal Shock Resistance

被引:0
|
作者
Li, Haoran [1 ,2 ]
Shahriari, Leila [1 ,2 ]
Khandwani, Yash [1 ,2 ]
Talevich, Samuel [2 ]
Reyes, Aspen [1 ,2 ]
Sweat, Rebekah [1 ,2 ]
Mao, Keyou [1 ,3 ]
Scammell, Lyndsey R. [4 ]
Whitney, R. Roy [4 ]
Park, Jin Gyu [1 ,2 ]
Wu, Qiang [1 ,2 ]
Liang, Zhiyong [1 ,2 ]
Yu, Zhibin [1 ,2 ]
机构
[1] Florida State Univ, Dept Ind & Mfg Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA
[2] Florida State Univ, High Performance Mat Inst, Tallahassee, FL 32310 USA
[3] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[4] BNNT Mat LLC, Newport News, VA 23606 USA
来源
ACS APPLIED ENGINEERING MATERIALS | 2023年 / 1卷 / 12期
基金
美国国家科学基金会;
关键词
polymer-derived ceramics; SiC; BNNTs; thermal shock; composites; extreme environments; MECHANICAL-PROPERTIES; PYROLYSIS; CERAMICS; FIBER;
D O I
10.1021/acsaenm.3c00524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ceramic composite manufacturing typically requires high temperatures and a long duration of sintering or pyrolysis and has a low yield. Efforts to accelerate manufacturing, especially in the case of emerging polymer-derived ceramics, can result in void and crack formation or even catastrophic failure of the ceramic product. Research findings reveal that boron nitride nanotube networks effectively reinforce polymer-derived silicon carbide ceramics, enabling them to withstand substantial volume changes during pyrolysis. This reinforcement results in the production of high-quality ceramics characterized by extremely low porosity and enhanced mechanical and thermal properties, encompassing improvements in the elastic modulus, fracture strength, ductility, and thermal shock resistance. No degradation of mechanical properties was observed after 100 thermal shock cycles with a sudden temperature drop of about 1100 degrees C at a rate of about 2190 degrees C s(-1). By increasing the nanotube weight concentration to 40%, highly flexible ceramic thin films were obtained that can be bent to a small radius without failure. With the addition of nanotubes, pyrolysis can also proceed with a much faster temperature ramping rate for both heating and cooling cycles, enabling much faster manufacturing throughput than conventional pyrolysis for dense-structure ceramics.
引用
收藏
页码:3205 / 3213
页数:9
相关论文
共 50 条
  • [31] Thermogravimetry, differential thermal analysis, and mass spectrometry study of the silicon nitride-boron carbide-carbon reaction system for the synthesis of silicon carbide-boron nitride composites
    Zhang, GJ
    Yang, JF
    Ohji, T
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (09) : 2256 - 2260
  • [32] Dielectric and thermal properties of epoxy/boron nitride nanotube composites
    Zhi, Chunyi Y.
    Bando, Yoshio
    Terao, Takeshi
    Tang, Chengchun
    Golberg, Dmitri
    PURE AND APPLIED CHEMISTRY, 2010, 82 (11) : 2175 - 2183
  • [33] Thermal Conductivity of Carbon/Boron Nitride Heteronanotube and Boron Nitride Nanotube Buckypapers: Implications for Thermal Management Composites
    Jones, Ruth Sang
    Gonzalez-Munoz, Sergio
    Griffiths, Ian
    Holdway, Philip
    Evers, Koen
    Luanwuthi, Santamon
    Maciejewska, Barbara M.
    Kolosov, Oleg
    Grobert, Nicole
    ACS APPLIED NANO MATERIALS, 2023, 6 (17) : 15374 - 15384
  • [34] Progress on Thermal Conductive Polymer/Boron Nitride Composites
    Xu W.
    Huang T.
    Li Y.
    Chen M.
    Wu L.
    Chen, Min (chenmin@fudan.edu.cn), 1600, Sichuan University (37): : 284 - 291
  • [35] Thermal conductivity of polymer composites with oriented boron nitride
    Ahn, Hong Jun
    Eoh, Young Jun
    Park, Sung Dae
    Kim, Eung Soo
    THERMOCHIMICA ACTA, 2014, 590 : 138 - 144
  • [36] Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry
    Masuda, Takashi
    Iwasaka, Akira
    Takagishi, Hideyuki
    Shimoda, Tatsuya
    THIN SOLID FILMS, 2016, 612 : 284 - 289
  • [37] Thermal shock resistance of polycrystalline cubic boron nitride
    Carolan, D.
    Ivankovic, A.
    Murphy, N.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (10) : 2581 - 2586
  • [38] Spark plasma sintering of silicon nitride-boron carbide composites
    Ayas, E.
    Kalemtas, A.
    Arslan, G.
    Kara, A.
    Kara, F.
    Key Engineering Materials, 2009, 403 : 225 - 226
  • [39] Study of machinable silicon carbide-boron nitride ceramic composites
    Jin, Hai-Yun
    Xu, Hui
    Qiao, Guan-Jun
    Gao, Ji-Qiang
    Jin, Zhi-Hao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 (1-2 C): : 214 - 217
  • [40] Microstructural evolution of polymer-derived hexagonal boron nitride fibres under high-temperature stretching
    Wang, Zhiguang
    Ge, Min
    Yu, Shouquan
    Sun, Xiaoming
    Qi, Xueli
    Zhang, Hao
    Xiao, Wen
    Zhang, Weigang
    JOURNAL OF ADVANCED CERAMICS, 2023, 12 (10): : 1973 - 1988